
Feature Enhanced Graph Representation Method for Graph Classification

Mohamad Abushofa1, Amir Atapour-Abarghouei2, Matthew Forshaw1,
A. Stephen McGough1

1, Newcastle University, School of Computing, UK,
Email:{m.e.a.abushofa2,matthew.forshaw,stephen.mcgough}@ncl.ac.uk

2, Durham University, Department of Computer Science, UK, Email:
amir.atapour-abarghouei@durham.ac.uk

1.

November 7, 2023

12023 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
Abushofa et al. FEGR

Introduction

A graph is formed from a collection of nodes which are connected together
via edges. Both nodes and edges may be tagged up with data – called here
properties (e.g., in a social network, nodes representing people may have
properties of name and age).
Graph presentations are divided into two categories: Graph Neural Networks
(GNNs)Parametric approaches and graph descriptors(non-parametric
methods)
We work on Non-parametric methods to do the Graph classification

Abushofa et al. FEGR

Introduction

Abushofa et al. FEGR

Introduction-Directed Graphs

G = (V,E) where V = {v1, v2, . . . , vn} and E ⊆ V× V

Abushofa et al. FEGR

Introduction-Directed Weighted Graph

G = (V,E,W) where V = {v1, v2, . . . , vn} and E ⊆ V× V

Abushofa et al. FEGR

Introduction-Graph Representation Problem

Given a graph representing
real-world entities and their
relationships
The goal is to design a function
f : G→ Rd

To perform any downstream
Machine Learning task

Abushofa et al. FEGR

Our main contributions
We enrich the graph embedding by incorporating aggregated original feature
information associated with each node with local and global graph measures.
We evaluate the proposed method in different experimental settings,
including graph classification, sensitivity, and the evolution of nodes and
edges in a graph.
We have made the source code publicly available to enable better
reproducibility of the results

Abushofa et al. FEGR

Motivation and Requirements

Graph Machine learning applications have found their way into the healthcare
sector, so there are necessary to find robust representation
There are two important factors that should be addressed, such as accuracy,
scalability.
The computational complexity of graph representation approaches often
grows exponentially with the number of nodes, existing approaches are often
unsuitable for massive graphs.

Abushofa et al. FEGR

Requirements

Our approach is driven by the following requirements:
Scalability: the new approach should be highly scalable, to graphs of millions
of vertices / edges, and capable of doing the classification in a reasonable
time. Ideally, the approach should be portable to a many-core or distributed
graph processing system to help with scalability.
Sensitivity To Graph Size: our approaches should take the size and order of
the graphs into consideration.
Sensitivity To Topologies: it should be able to detect the difference between
graphs which are highly structurally and topologically similar.
Accuracy: the approach should provide a graph embedding that results in a
high level of accuracy.

Abushofa et al. FEGR

Graph Representation Framework

Abushofa et al. FEGR

Non-parametric approaches

After obtaining the graph embedding, we utilize a non-parametric classifier
K-Nearest
Decision Trees
Random Forest:
Support Vector Machines (SVM):
In our methodology, we employ the random forest algorithm to achieve a
more robust data representation.

Abushofa et al. FEGR

Parametric approaches

In graph representation, to encode the the graph, we can use different parametric
approaches (GNNs baseline) such as

Graph neural networks(GNNs)
Graph convolutional networks (GCNs)
GraphSAGE

Hamilton et al., 2017

ml−1
v = fl(h(l−1)(u)) for u ∈ N(v) (1)
hl

v = gl(h(l−1)(v),ml−1
v) (2)

Abushofa et al. FEGR

Methodology

Generating graph topological
Generating graph fingerprint
Aggregated node properties

Abushofa et al. FEGR

Generating graph topological descriptors

Generating graph topological descriptors
Local features:

Node degree
Clustering coefficient
the average degree of neighbours
Average clustering of neighbourhood

Global features:
The largest five eigenvalues
Total number of nodes
Total number of edges
Number of connected components

To encode the local and global properties of the graph, we follow these steps:
We initially compute the local features for each vertex.
Statistics are then computed for each of the four local features. We use the
statistics of median, mean, standard deviation, skewness, and kurtosis to
form the graph local descriptor.
These can be concatenated into a vector of twenty values.

Abushofa et al. FEGR

Local features

The FEGR approach extracts four features from each vertex within a graph.
Through experimentation, we have determined that the following four feature
metrics give the best balance between topological sensitivity and run-time.
Other metrics could also be used if other characteristics of a graph are
important.
For each of the four vertex features listed below, a value is extracted for each
vertex v ∈ V
Node Degree (δ): The number of connections a given node has to other
nodes in the network.

Node 1 has a degree of 2
Node 2 has a degree of 4
Node 3 has a degree of 2
Node 4 has a degree of 3
Node 5 has a degree of 3

Abushofa et al. FEGR

Local features

Clustering coefficient c: the clustering coefficient is a measure of the
degree to which nodes in a graph tend to cluster together.
The clustering coefficient c is calculated as follows:

cu =
|(v1, v2) ∈ E : v1, v2 ∈ N|

2du

Abushofa et al. FEGR

Local features

The average degree of neighbors, it denoted as k, is the average degree of
the neighborhood of each node. It can be calculated as:

knn,i =
1
|N(i)|

∑
j∈N(i)

kj

where N(i) represents the neighbors of node i and kj is the degree of node j
belonging to N(i).
Average clustering of the neighborhood: The average clustering score of
the neighborhood is determined for each vertex by computing the mean of all
the local clustering scores within the vertex’s neighborhood.

Abushofa et al. FEGR

Global Features

The largest five eigenvalues
{e1, . . . , e5}. We keep the top five
values.

Algorithm 1: Calculate Largest Five Eigenvalues
Data: Graph G
Result: Largest Five Eigenvalues

1 eigenvalues ←
np.linalg.eigvals(nx.adjacencymatrix(G).toarray()) sortedeigenvalues←
sorted(eigenvalues, reverse=True);

2 largestfiveeigenvalues← sortedeigenvalues[: 5]
Abushofa et al. FEGR

Global Features

Total number of nodes, N = |V|.
Total number of edges, L = |E|.
Number of connected components, C. This is the total number of
components within the graph, with a component being a subgraph in which
there is a possible path between every vertex, while vertices in different
components have no possible path between them.

Abushofa et al. FEGR

Generating Graph Fingerprint

Statistical terms

{med(δ), δ̄, sd(δ), skew(δ), kur(δ),
. . . ,

med(n), n̄, sd(n), skew(n), kur(n)}

where med(□), □̄, sd(□), skew(□) and kur(□) are the median, mean, standard
deviation skewness and kurtosis of □. We can then concatenate the four global
features to this fingerprint:

Local and global features combination

{med(δ), δ̄, sd(delta), skew(δ), kur(δ),
...,

med(n), n̄, sd(n), skew(n), kur(n),
e1, e2, e3, e4, e5,N, L,C}.

Abushofa et al. FEGR

Aggregated Node Properties

Mapping node i to a vector of values [xi,1, xi,2, ..., xi,n]. gives us a vector of
length n for each of the m nodes in the graph.
aggregate this data down to a simple vector. We could aggregate this down
using the same approach as used for the local node properties (median,
mean, standard deviation, skew and kurtosis for each of the n elements)
sum the vectors have given promising results. Therefore, we define the
aggregate properties as

Aggregating properties

[
m∑

i=1
xi,1,

m∑
i=1

xi,2, ...,
m∑

i=1
xi,n].

Abushofa et al. FEGR

Algorithm 2: Local Feature Extraction Algorithm
1 Input: G1,G2, . . . ,Gk (a set of graphs)
2 Output: {FG1,FG2, . . . ,FGk} (a set of node × feature matrices)

3 for j ∈ {G1,G2, . . . ,Gk} do
4 FGj = [] // Initialize feature matrix for Gj // Extract features for all nodes in Gj

for i ∈ Vj do
5 FGj = FGj ∪ {δ, ci,k,ca,}

6 // Return a set of node × feature matrices return {FG1,FG2, . . . ,FGk}

Algorithm 3: Feature Aggregation Algorithm
1 Input: {FG1,FG2, . . . ,FGk} (a set of node × feature matrices)
2 Output: { ˜sG1, ˜sG2, . . . , ˜sGk} (a set of ”signature” vectors for the graphs)

3 for j ∈ {FG1,FG2, . . . ,FGk} do
4 ˜sGj = [] // Initialize ”signature” vector for Gj
5 //For each feature column in FGj, compute a set of aggregates

6 for feat ∈ FGj do
7 ˜sGj =

˜sGj ∪ {median(feat),mean(feat), stdev(feat), skewness(feat), kurtosis(feat)}

8 // Return a set of ”signature” vectors for the graphs return { ˜sG1, ˜sG2, . . . , ˜sGk}

Algorithm 4: Global Feature Extraction Algorithm
1 Input: G1,G2, . . . ,Gk (a set of graphs)
2 Output: {FgG1,FgG2, . . . ,FgGk} (a set of node × feature matrices)

3 for j ∈ {G1,G2, . . . ,Gk} do
4 // Extract global features for whole graph Gj
5 Compute the largest five eigenvalues {e1, e2, e3, e4, e5} of G.
6 N = |V|
7 L = |E|
8 C = Number of connected components in G
9 // Return the computed features return {e1, e2, e3, e4, e5},N, L,C

10 // Return a set of global features for each graph return {FG1,FG2, . . . ,FGk}

Algorithm 5: Graph Processing and Classification
1 Input: List of graphs {G1,G2,G3, . . . ,Gn}

2 Initialize empty lists, labels, graphs,features=[],[],[]
3 for each j in {G1,G2,G3, . . . ,Gn} do
4 Append d.y.item() to labels Convert d to a networkx graph with specified

attributes
5 Append the graph to graphs list
6 Calculate features by summing node attributes d.x along axis 0
7 Append features to features list
8 Initialize an empty list graph_signatures
9 for each index, g in enumerate(graph_list) do

10 Compute signature sig for g
11 //where sig are list of local and global features
12 Get the corresponding networkx graph nx_g
13 Calculate adjacency matrix adj for nx_g
14 Extend sig with features from features[index]
15 Append sig to graph_signatures list
16 // Apply a random forest classifier to the graph signatures acc =

apply_RF_Grid(graph_signatures, labels)

Methodology diagram

Figure: .1
Abushofa et al. FEGR

Baseline

FGSD: A spectral graph descriptor that uses spectral distances among pairs
of nodes.
NetLSD: Uses the idea of heat kernels.
HOSD: Uses subgraphs’ counting with compression.
NetSIMILE: Uses statistical node and graph-level properties.
Shortest Path Kernel: Based on pair-wise distances.
WL kernel: Based on the idea of color refinement based on nodes’
neighborhood.

Abushofa et al. FEGR

Datasets for Graph Classification

MUTAG: It contains a total of 188 graphs with an average of 17.93 nodes
and 19.79 edges per graph.
Proteins: It includes 1113 graphs with an average of 39.06 nodes and 14.69
edges per graph.
PTC: It comprises 344 graphs with an average of 25.56 nodes and 72.81
edges per graph.
AIDS: It contains 2000 graphs with an average of 15.58 nodes and 16.19
edges per graph.
NCI1: It consists of 4110 graphs with an average of 29.87 nodes and 32.3
edges per graph.
NCI109: It comprises 4110 graphs with an average of 29.56 nodes and 32.13
edges per graph.
D & D: It includes 1178 graphs with an average of 284.3 nodes and 715.65
edges per graph.

The number of classes in these datasets is two. These are benchmark graph
classification datasets available on the Torch Geometric website.

Abushofa et al. FEGR

Experimental setup and Results

Results:We can observe from the results (Table I) that the proposed method
outperforms all other methods on PROTEINS and DD datasets while the
results on the AIDS dataset are identical to that of DGSD. We outperform all
other methods on AIDS as well. On the remaining dataset, we achieved
results within 1% of the top result on MUTAG, and NCI1 and within 3% on
PTC and NCI109 datasets. These results clearly show that graph global
features positively contribute to the graph representation.

Abushofa et al. FEGR

Classification Accuracy Comparison

Dataset SP NHK EHK GK NetSimile FGSD NetLSD DGSD Oursw(g) h(g)
Mutag 86.60 85.06 85.37 77.01 83.42 88.26 82.40 83.31 87.70 87.80
PTC 59.00 60.58 57.54 57.56 55.80 60.70 57.22 53.49 61.32 58.20

Proteins 74.12 74.29 59.56 73.22 69.71 70.25 68.10 72.14 73.68 76.10
NCI1 71.65 75.52 50.04 58.12 68.87 79.75 61.94 67.25 73.48 78.9

NCI109 71.48 75.23 50.37 58.97 67.45 80.44 60.38 64.64 72.01 77.67
AIDS 99.24 99.2 99.60 98.75 97.95 98.5 93.7 99.69 99.8 99.8
D&D 77.94 75.81 58.65 >D 73.86 75.9 70.21 72.33 78.52 78.54

Table: Classification accuracy comparison. >D indicates experimental time exceeds a
day. We report the state-of-the-art results from DGSD because we set our experimental
procedure similar to it to provide a fair comparison.

Abushofa et al. FEGR

Method Sensitivity Evaluation

we generated a graph with Barabasi Abert model with 100,000 nodes and
300,000 edges.
We consider six network rewiring experiments, which are rewiring 20,000,
40,000, 50,000, 60,000, 80,000, and 100,000 edges in the previously
generated original graph. Also,
We can clearly see that as the number of edges in the rewiring increases, the
distance between the embeddings increases. This asserts the proposed
descriptor is very sensitive to the graph topology, which means it can
discriminate between similar graphs very well.

Abushofa et al. FEGR

Sensitivity to Rewiring Edges

Abushofa et al. FEGR

Run time Analysis

102 103 104

#number of nodes

10 2

10 1

100

101

102

ru
nn

in
g

tim
e

(s
ec

)

102 103 104 105 106

#number of edges

100

101

ru
nn

in
g

tim
e

(s
ec

)

20000 30000 40000 50000 60000 70000 80000 90000 100000
#rewired edges

2.5

3.0

3.5

4.0

4.5

5.0

5.5

di
ffe

re
nc

e
in

 th
e

em
be

dd
in

gs

Abushofa et al. FEGR

Conclusion

The paper introduces innovative graph representation methods designed for
graph classification tasks.
It extensively investigates a range of graph theory concepts and frameworks,
culminating in the identification of nine measures for constructing a
comprehensive graph descriptor.
These measures are adept at capturing both local and global information
within the graph structure.
In addition to the theoretical features, the method utilizes aggregated
node-level attributes to create a more expressive representation.
Comprehensive evaluations conducted on multiple graph classification
datasets demonstrate the effectiveness and practicality of the proposed
approach.

Abushofa et al. FEGR

	Introduction
	Some LaTeX Examples

