Lossy Image and Video **Compression within Deep Neural Networks**

Matt Poyser, Amir Atapour-Abarghouei, Toby Breckon

Department of Computer Science Durham University



Frame at high compression from UCF101 Human Action Recognition dataset (left), Object Detection at JPEG compression level 10 (right)

Approach

- How much does lossy compression impact performance of pre-trained networks?
- How much performance can we recover by retraining the networks on lossily compressed data?
- 5 domains: Segmentation, Depth Estimation, Human Pose Estimation, Object Detection, and Human Action Recognition.
- 5 architectures: encoder-decoder (SegNet [4]), GAN [1], end-to-end CNN (OpenPose [5]), Region-based CNN (FasterRCNN [3]), and two-stream [2].

Pre-trained Network Performance

Segmentation at JPEG level 10

Original (top) and Depth-Estimation (bottom) with pre-trained GAN at JPEG level 10

Results

Results before (left) and after (right) re-training. Red indicates maximum safe compression rate.

Compression Rate	mAP	Compression Rate	mAP
95	0.703	95	0.703
75	0.686	75	0.694
50	0.666	50	0.692
15	0.545	15	0.647
10	0.442	10	0.627
5	0.187	5	0.559

Object Detection at various JPEG compression rates

Compression Rate	mAP	Compression Rate	mAP
95	0.711	95	0.711
75	0.689	75	0.708
50	0.655	50	0.678
15	0.413	15	0.654
10	0.323	10	0.597
5	0.098	5	0.454

Human Pose Estimation at various JPEG compression rates

Compression Rate	Abs. Rel.	Sq. Rel.	RMSE	Compression Rate	Abs. Rel.	Sq. Rel.	RMSE
95	0.0112	0.0039	0.0588	95	0.0112	0.0039	0.0588
75	0.0116	0.0039	0.0589	75	0.0113	0.0035	0.0560
50	0.0123	0.0038	0.0587	50	0.0103	0.0029	0.0502
15	0.0146	0.0040	0.0599	15	0.0121	0.0034	0.0556
10	0.0192	0.0042	0.0617	10	0.0152	0.0031	0.0528
5	0.0283	0.0060	0.0749	5	0.0159	0.0040	0.0599

Depth Estimation at various JPEG compression rates

ompression Rate	global ACC	mean ACC	mIoU	Compression Rate	global ACC	mean ACC	mIoU
95	0.911	0.536	0.454	95	0.911	0.536	0.454
75	0.909	0.530	0.448	75	0.910	0.522	0.446
50	0.904	0.523	0.438	50	0.908	0.503	0.431
15	0.814	0.459	0.338	15	0.902	0.494	0.420
10	0.794	0.421	0.304	10	0.895	0.477	0.405
5	0.782	0.364	0.265	5	0.879	0.445	0.374

Pixel-wise Segmentation at various JPEG compression rates

· ···· · ···· · ····						
Compression Rate	Top-1 Spatial	Top-1 Motion	Top-1 Fusion			
23	78.8736	70.1198	83.5485			
25	78.7999	44.9225	73.6030			
30	78.4563	37.3598	72.2329			
40	74.5704	38.9565	70.8803			
50	44.1977	15.3267	41.4777			
Compression Rate	Top-1 Spatial	Top-1 Motion	Top-1 Fusion			
23	78.8736	70.1198	83.5485			
25	78.9056	39.7192	71.7616			
30	78.5620	34.3161	70.5765			
40	75.9450	9.2550	67.1227			
50	62.5165	6.7300	56.2279			

Human Action Recognition at various H.264 CRF values

Conclusions

- Can afford to compress to 15% of the original size, across all domains, without loss performance
- SegNet, GAN and two-stream spatial stream are particularly resilient. We posit that this is because of the up-sampling within the pooling layers of their decoder sub-network.

[1] A. Atapour-Abarghouei and T. Breckon, "Real-time monocular depth estimation using synthetic data with domain adaptation," in Proc. Computer Vision and Pattern Recognition. IEEE, June 2018, pp. 1–8. [2] K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," in vances in Neural Information Processing Systems 27, 2014, pp. 568-576.

S. Ren, K. He, R. B. Girshick, and J. Sun, "Faster R-CNN: towards real-time object detection with region proposal networks," Computing Research Repository, vol. abs/1506.01497, 2015.
V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture

 [5] J. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, "Realtime multi-person 2d pose estimation using part affinity fields," in Conference on Computer Vision and Pattern Recognition, 2017, pp. 1302–1310