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Results before (left) and after (right) re-training.
Red indicates maximum safe compression rate.
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Human Action Recognition at various H.264 CRF values
Conclusions

+ Can afford to compress to 15% of the original
size, across all domains, without loss in
performance

* SegNet, GAN and two-stream spatial stream are
particularly resilient. We posit that this is because of
the up-sampling within the pooling layers of their
decoder sub-network.
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