

Veritatem Dies Aperit - Temporally Consistent Depth Prediction Enabled by a Multi-Task Geometric and Semantic Scene Understanding Approach

Results include sharp temporally consistent depth images along with semantic segmentation.

Contributions:

Primary objective: *depth prediction* (monocular depth estimation and depth completion). Via synthetic training images [1] from urban driving scenarios, our approach also performs semantic scene segmentation in a single **multi-task** deep network.

Model produces temporally consistent results via the temporal constraint of sequential frame **recurrence** and a per-trained **optical flow** network.

with temporal consistency

without temporal consistency

Via deeper and improved scene representation learned by the multi-task model, it generalises to **real-world imagery** without domain adaptation.

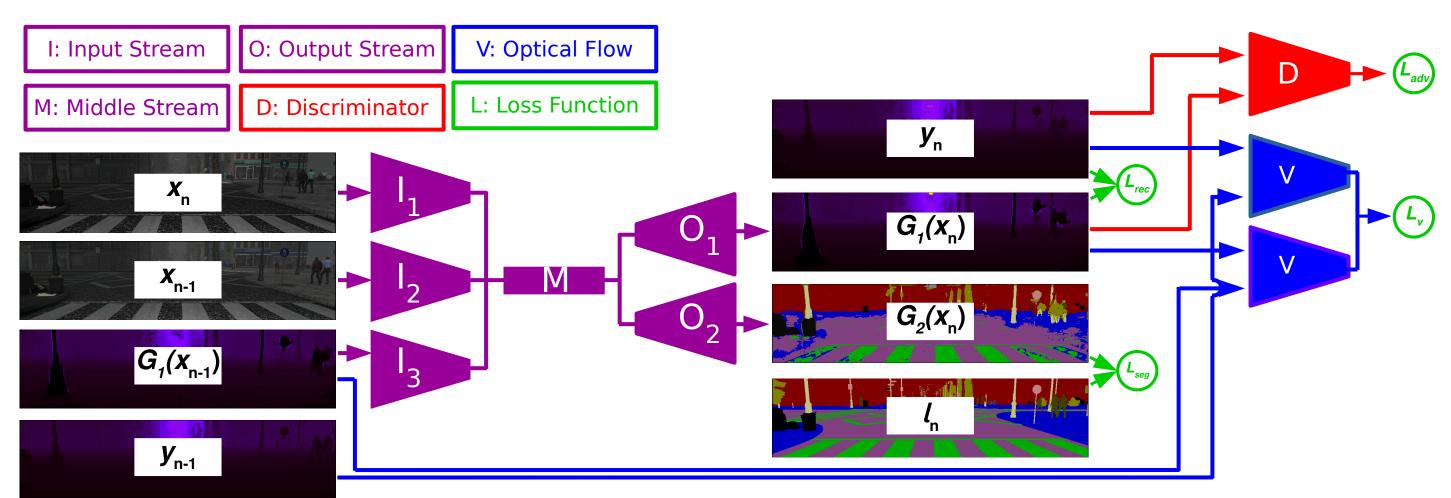
The approach is capable of producing superior results by preserving highlevel spatial features using a complex network of **skip connections**.

Training is performed using a robust objective function consisting of four components: depth reconstruction loss, adversarial loss, depth **smoothing** loss, **optical flow** loss, and semantic **segmentation** loss.

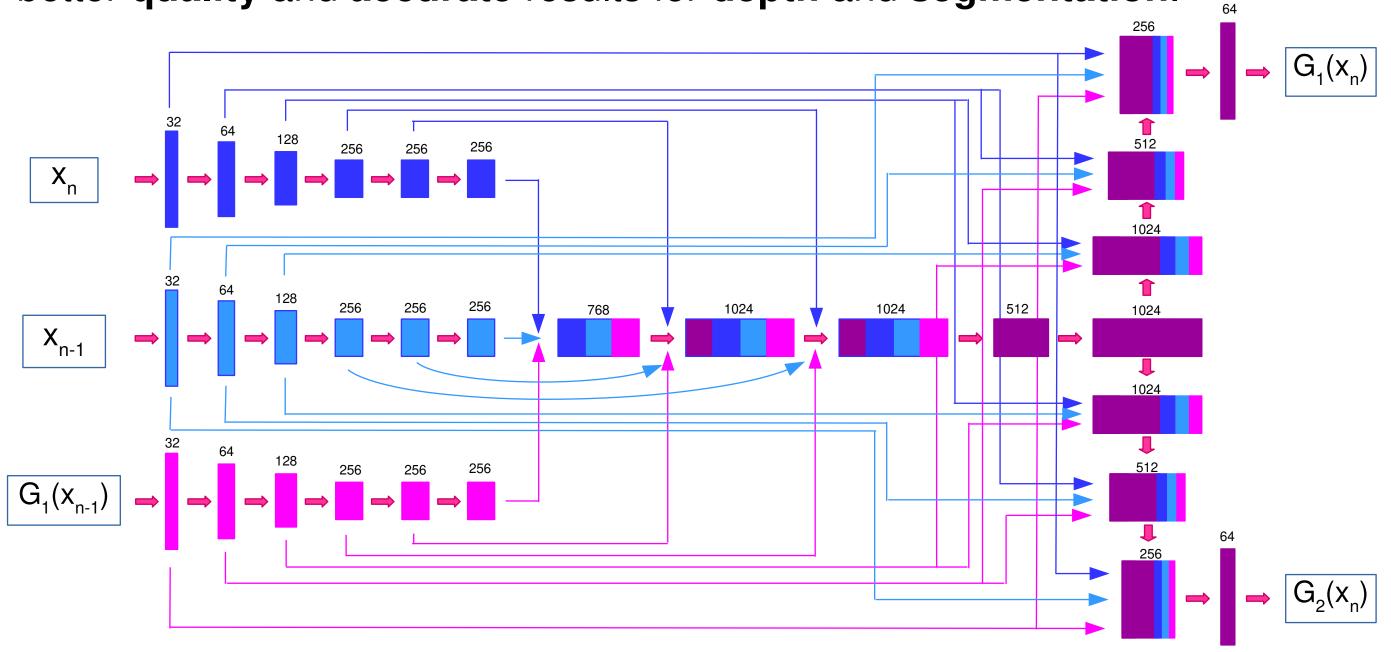
Amir Atapour-Abarghouei and Toby P. Breckon, Durham University, UK

Proposed Approach:

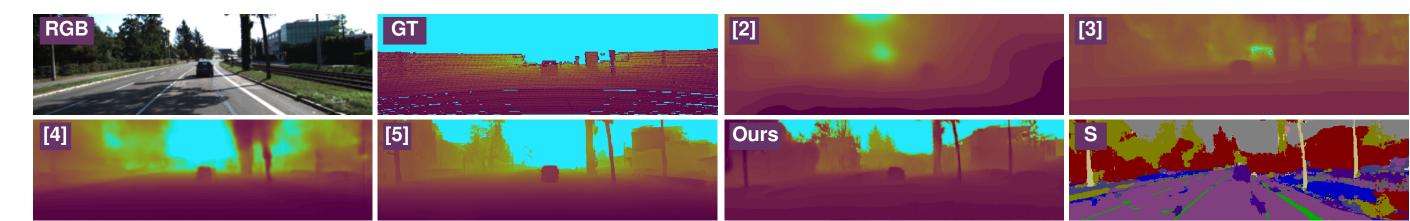
At each time step, the network takes the output generated at the previous time step as a recurrent input to preserve temporal continuity. Gradients from a pretrained frozen optical flow network receiving output and ground truth depth images from current and previous steps also enforce temporal consistency.



A deep robust multi-stream architecture with complex skip connections, results in better high-level contextual and geometric structural learning, leading to better quality and accurate results for depth and segmentation.



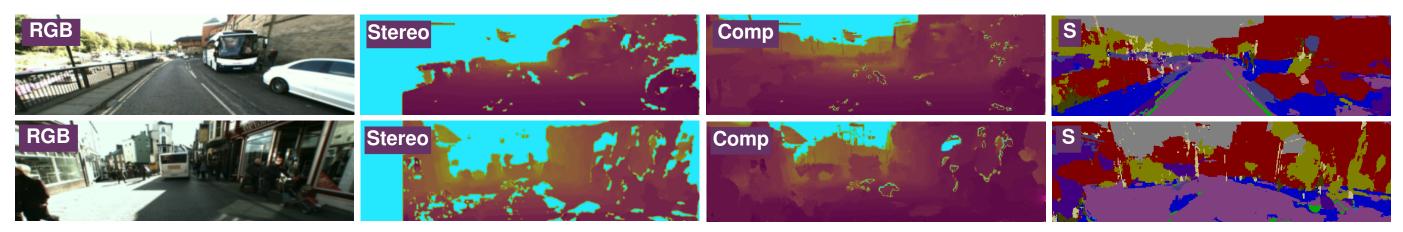
Results:



Superior qualitative results in monocular depth estimation.

Methods	Error Metrics				Accuracy Metrics		
	Abs. Rel.	Sq. Rel.	RMSE	RMSE log	σ < 1 . 25	$\sigma < 1.25^{2}$	$\sigma < 1.25^{3}$
Zhou et al. [2]	0.208	1.768	6.856	0.283	0.678	0.885	0.957
Godard et al. [3]	0.148	1.344	5.927	0.247	0.803	0.922	0.964
Our Results	0.193	1.438	5.887	0.234	0.836	0.930	0.958

Ours approach remains **quantitatively** competitive with the state of the art.

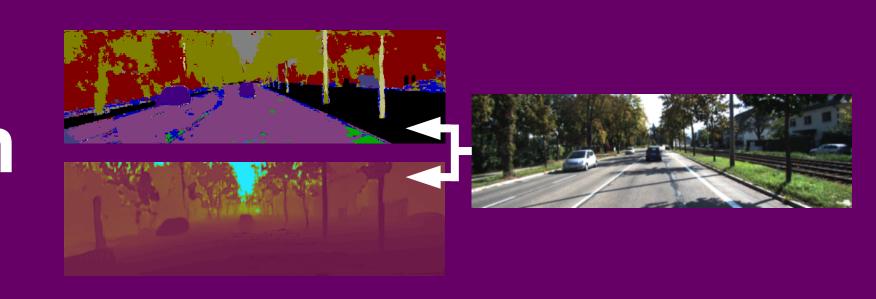


Plausible depth completion using unseen local images from Durham, UK.

Promising **semantic segmentation** results on well-established datasets.

 [1] German et al., 'The SYNTHIA dataset: a large collection of synthetic images for urban scenes.' CVPR, 2016.
[2] Zhou et al., 'Unsupervised learning of depth and ego-motion from video.' CVPR, 2017.
[3] Godard et al., 'Unsupervised monocular depth estimation with left-right consistency'. CVPR, 2017. [4] Kuznietsov, et al., 'Semi-supervised deep learning for monocular depth map prediction.' CVPR, 2017. [5] Atapour et al., 'Real-time monocular depth estimation with domain adaptation via image style transfer.' CVPR, 2018.

Network **code and models available** here:



https://github.com/atapour/temporal-depth-segmentation

