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While the primary objective is monocular depth 
estimation via a mix of synthetic [1] and real-world [2] 
training images from urban driving scenarios, our 
method performs sparse depth completion in a multi-
task dual-network approach without any retraining.

Proposed Approach:
The first network, Sparse Generator, produces a sparse 
representation of the scene depth, which is then passed 
into the second network, Dense Generator, that produces 
the dense depth output. Two Discriminator networks 
ensure the overall quality of the final result.

During inference, the entire model (Sparse Generator and 
Dense Generator) can be used to perform monocular 
depth estimation:

Results:

Superior qualitative results in monocular depth estimation.

Generalisation capabilities are tested using data locally captured in Durham, UK.
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Monocular input Dense depth output

Contributions:
Methods

Error Metrics Accuracy Metrics
Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Zhou et al. [3] 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Godard et al. [4] 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Atapour et al. [5] 0.110 0.929 4.726 0.194 0.923 0.967 0.984

Our Results 0.080 0.836 4.437 0.157 0.929 0.970 0.985
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Ablation studies demonstrate the importance of every component of the approach.

Our approach comprises two networks, is trained on 
two data sets and is based on a loss function with three 
loss components: L1 Loss, Adversarial Loss and a 
Smoothing Loss.
Extensive ablation studies and evaluations demonstrate 
the importance of every component of the approach.
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or the second network (Dense Generator) can be used 
alone to complete a sparse depth image captured using 
LiDAR without any need for retraining or fine tuning:
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Superior quantitative results in monocular depth estimation.
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Results of sparse depth completion. Note how the upper regions of the results are 
better synthesised in our approach due to the use of synthetic training data.
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