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Abstract
Anomaly detection is a classical problem within auto-

mated visual surveillance, namely the determination of the
normal from the abnormal when operational data avail-
ability is highly biased towards one class (normal) due to
both insufficient sample size, and inadequate distribution
coverage for the other class (abnormal). In this work, we
propose the dual use of both visual appearance and local-
ized motion characteristics, derived from optic flow, ap-
plied on a per-region basis to facilitate object-wise anomaly
detection within this context. Leveraging established ob-
ject localization techniques from a region proposal network,
optic flow is extracted from each object region and com-
bined with appearance in the far infrared (thermal) band to
give a 3-channel spatiotemporal tensor representation for
each object (1 × thermal - spatial appearance; 2 × op-
tic flow magnitude as x and y components - temporal mo-
tion). This formulation is used as the basis for training con-
temporary semi-supervised anomaly detection approaches
in a region-based manner such that anomalous objects can
be detected as a combination of appearance and/or motion
within the scene. Evaluation is performed using the Long-
Term infrared (thermal) Imaging (LTD) benchmark dataset
against which successful detection of both anomalous ob-
ject appearance and motion characteristics are demon-
strated using a range of semi-supervised anomaly detection
approaches.

1. Introduction
Automated video surveillance has become increasingly
prevalent in society for the security of various public fa-
cilities, transportation systems and national infrastructure
alike [4]. An important operational aspect of this type of
monitoring is the detection of anomalous [24,24,46] or un-
usual events [29,30,44], which is an area within which algo-
rithmic solutions currently lag behind the increasingly con-
ventional use of object detection and tracking for automated
video surveillance [13].

An anomaly, in this context, refers to behaviour or ap-
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Figure 1. Exemplar infrared (thermal) imagery from the LTD
dataset (upper) and corresponding motion information (lower).

pearance that deviates from normal or expected patterns for
that locale. In many deployment scenarios, the use of con-
ventional object detection or tracking solutions results in
a high level of system-generated alarms for benign occur-
rences that fall within the regular Pattern-of-Life (PoL) of
activity for that location [1].

In general, the anomaly detection problem addresses an
aspect of the open set problem in computer vision - whilst
normality in terms of the appearance and behaviour of ob-
jects within the scene can be bounded, conversely the set of
possible anomalous occurrences is unbounded. To this end,
anomalous events rarely occur as compared to normal ac-
tivities, which in itself results in the commonplace dataset
challenge of anomaly detection - whilst normal data sam-
ples may be abundant, the availability of abnormal anoma-
lous samples is limited in both volume and variety. A
common approach is to learn a model of the normal (non-
anomalous) data distribution from the abundance of normal
sample training data available and then detect anomalies
as outliers in a semi-supervised manner [3, 5]. However,
within the context of visual surveillance, this requires an un-
derstanding of complex visual patterns, and some patterns
can only be detected when long-term temporal relationships
and causal reasoning are learned in the model [55], such as
traffic accidents, crimes or illegal activity.



Whilst there is an abundance of prior work in anomaly
detection within the context of visual surveillance, they
largely consider fairly basic anomalous object occurrences
over datasets with a very limited timeframe [24, 29, 30, 44]
such as UCSD Ped1/2 [24], Avenue [29] or ShanghaiTech
[30]. Although larger datasets such as UCF-Crime [44] of-
fer more scope, their non-uniform (internet-based) curation
makes their use in the evaluation of anomaly detection for
fixed camera surveillance deployment challenging. In ad-
dition, all datasets largely focus on visible-band (colour)
imagery, with only very few containing both visible and
infrared (thermal) imagery [9, 17] despite the increasing
prevalence of infrared (thermal) imagery within the oper-
ational surveillance context [6, 13, 21].

An additional challenge is the varying environmental
conditions, which in itself affects both visible-band [24,
29, 30, 44] and infrared-band anomaly detection alike [17].
This issue is illustrated in Figure 1, where four normal har-
bour scenes exhibit varying benign changes over time in
terms of contrast, illumination, foreground water ripples
and other environmental factors that can then differ signif-
icantly against the a priori (non-anomalous) data distribu-
tion for the scene [33].

To overcome these issues, in this paper, we investigate
the use of short-duration, spatiotemporal signatures as a
means to in-scene object-wise anomaly detection and ap-
ply these over infrared (thermal) imagery captured under
varying environmental conditions.

To this end, we propose the dual use of both visual ap-
pearance and localized motion characteristics, derived from
optic flow, applied on a region-based basis to facilitate
object-wise anomaly detection within this context. Lever-
aging established object localization from a region proposal
network, optic flow is extracted from each object region and
combined with the appearance in the far infrared (thermal)
band to give a 3-channel spatiotemporal tensor representa-
tion for each object (1 × thermal - spatial appearance; 2 ×
optic flow magnitude as x and y components - temporal mo-
tion). This formulation is used as the basis for training con-
temporary semi-supervised anomaly detection approaches
in an object-wise manner such that anomalous objects can
be detected as a combination of appearance and/or motion
within the scene.

The main contributions of this work are as follows:

– an extension to prior work in region-based anomaly de-
tection [1] to jointly consider the use of both visual
appearance and localized motion characteristics for in-
scene objects.

– the evaluation of five semi-supervised anomaly de-
tection approaches within this context that differ in
formulation - i.e., classification-based (DFKDE [2]),
reconstruction-based (FastFlow [51], GANomaly [3])
and student-teacher pair (RD [10], STFPM [48]).

– an illustration of region-based (per object) anomaly de-
tection in the context of automated visual surveillance
applied to far infrared (thermal) band imagery with
quantitative and qualitative performance reported on
a per object basis over the varying environment con-
ditions of the Long-Term infrared (thermal) Imaging
(LTD) benchmark dataset [33].

2. Literature Review
Anomaly detection via automated video surveillance has
been intensively studied because of its potential for use in
autonomous surveillance systems [44] [50] [53]. In this
context, most research addresses the problem under the as-
sumption that the operational data availability is highly bi-
ased towards one class (normal) due to both insufficient
sample size, and inadequate distribution coverage for the
other class (abnormal). The process is often carried out via
the following steps. In the training phase, features of normal
training samples are extracted. A reference model is then
fitted on these features. During the testing phase, if features
of the input data cannot fit the reference model well, they
are considered as anomalies [52] [29] [23] [8] [16] [20].

Recently, with the great success of deep learning, con-
temporary approaches use the features from trained deep
neural networks [11] [47] [34] [43]. Alternatively, some
deep learning approaches depend on data reconstruction
methods. This relies on using generative models to learn the
representations of normal samples in video clips by min-
imising the reconstruction error [18] [28] [31] [32] [35]
[42]. During inference, it is assumed that unseen anomalous
video clips often cannot be reconstructed well and samples
with high reconstruction errors are considered anomalies.

Whilst previous approaches mainly analyse video clips
on a frame-wise basis, another approach is to classify nor-
mal or abnormal by modelling object trajectories. For
instance, Li et al. [22] modelled the trajectories of nor-
mal events via sparse reconstruction analysis, then detect
any abnormal trajectories as outliers. In [39], a deep au-
toencoder is trained to model normal trajectory, whilst the
follow-up work [40] incorporates a GAN in which the dis-
criminator is trained to distinguish normal and abnormal
trajectory reconstruction errors given by a deep autoencoder
[39]. While object trajectories manage to capture long-term
object-level patterns, this may fail iin crowded or cluttered
scenarios.

An alternative approach is to model the visual appear-
ance using low-level features extracted from local regions.
Hinami et al. [15] propose joint detection and recounting
of abnormal events via multi-task Fast RCNN [14]. Whilst
[15] use geodesic object proposal [19] and moving object
proposals [12] to extract local regions, Adey et al. [1] in-
corporate the same method but take advantage of the state-
of-the-art Faster-RCNN [38] to extract potential local re-
gions, to be fed into Kernel Density Estimation (KDE) for



classification purposes. In another approach, more modern
object detectors such as Single Stage Detector (SSD) [25]
and CenterNet [54] are used in [18] and [41] respectively
to detect local regions. In [18], the local region is then
fed into SVM classifiers for anomaly classification, while
in [41], the local region is trained in an adversarial manner
for anomaly classification.

Another approach is to incorporate motion characteris-
tics as an indicator of anomaly [28] [37] [32] [49]. Liu et
al. [28] add an optical flow loss as the motion constraint
during training time, whilst the work in [37] [32] attempts
to learn motion by predicting the optical flow of the current
frame. On the other hand, the work in [49] leverages the
optical flow information by guiding the frame prediction,
where they predict normal frames with high quality and ab-
normal frames with low quality.

While these efforts have shown good detection accuracy
in anomaly detection tasks, most of the methods mentioned
above concentrate on anomaly detection on visible-band
(colour) imagery [55] [24] [29] [30] [44] and grayscale im-
agery [15] [1] [18] [41]. On the other hand, all aforemen-
tioned work [28] [37] [32] [49] focuses on how to directly
predict future frames via optical flow. Existing work that
uses region-based approaches such as [1] [15] specifically
ignore the motion characteristic. Meanwhile, [18] incorpo-
rates expensive motion information such as a motion convo-
lutional autoencoder, while [41] only relies on past spatial
gradient as motion information for anomaly detection.

By contrast, we propose the dual use of both region-
based appearance and flow characteristics to facilitate
object-wise anomaly detection in infrared surveillance im-
agery. Inspired by region-based object localization based
on a region proposal network [1], and computationally less
expensive optical flow method, we combine the infrared
(thermal) appearance with optic flow resulting 3-channel
spatiotemporal tensor representation for each region. This
will be used as the basis for training contemporary semi-
supervised anomaly detection approaches in an object-wise
manner such that anomalous objects can be detected as a
combination of appearance and/or motion within the scene.

3. Methodology
Figure 2 illustrates the overall architecture of the proposed
method, which consists of a two-stage approach that sepa-
rates the object and anomaly detection tasks.

3.1. Object Detection and Optical Flow
An object detector is trained to predict a set of bounding
boxes surrounding objects belonging to a set of classes C
given the i-th thermal image Ii ∈ [0, 1]H×W , where H
and W are the dimensions of the image, from a sequence
of N images I = {Ii}Ni=1. A prediction consists of a
box represented as b = (xc, yc, w

′, h′, c), where xc, yc

are the centre of the box, w′, h′ are the width and height
and c ∈ C is the category. In parallel, the optical flow
of Ii is estimated, resulting in a flow ϕi ∈ RH×W×2 that
describes the pixel-wise displacements in the x and y di-
rections (encoded in the last 2 channels of ϕi). The i-th
optical flow is estimated from images Ii and Ii−1 using a
pre-trained PWC-Net [45], due to its compact model size.
Subsequently, a patch pt ∈ [0, 1]h

′×w′
with associated cat-

egory c is extracted from the thermal image Ii given the
prediction b, and it is aggregated with an optical flow patch
pϕ ∈ Rh′×w′×2 from ϕi at the same spatial location de-
fined by b. The final object representation p ∈ Rh′×w′×3 is
finally obtained from the concatenation of pt and pϕ .

3.2. Anomaly Detection
We present a semi-supervised anomaly detection approach,
where we train based solely on normal data samples com-
prising object regions within the scene (from first-stage
object detection). Given the challenges of comprehen-
sive anomalous data collection within the context of in-
frared (thermal) video surveillance, here, we leverage ex-
isting anomaly detection methods by down-selecting five
second-stage anomaly detection approaches that do not re-
quire anomalous training examples.

DFKDE [2]: Deep Feature Kernel Density Estimation
(DFKDE) is a fast one-class anomaly classification algo-
rithm that consists of a deep neural network-based fea-
ture extraction stage followed by an anomaly classifica-
tion stage consisting of principal component analysis (PCA)
and Gaussian Kernel Density Estimation (KDE). In the first
stage of anomaly classification, the features are reduced to
the first 16 principal components via principal component
analysis (PCA). In the second stage of anomaly classifica-
tion, Gaussian Kernel Density estimation (KDE) is applied
to the principal component features. The idea of KDE is
that the training datasets follow some arbitrary distribution,
and the distribution can be modelled by employing kernel
density estimation. At the inference phase, if a lower prob-
ability density is observed below the threshold, which is de-
termined by the training dataset, this indicates the presence
of an anomaly against the data distribution learned from the
training data examples.

FastFlow [51]: Unsupervised anomaly detection and lo-
calization via 2D normalizing flows (FastFlow) consists of
2D normalising flow for anomaly detection with a fully con-
volutional neural network architecture. The visual features
are first extracted by a deep feature extractor and subse-
quently fed into the normalising flow component to esti-
mate the probability density. In the training phase, FastFlow
learns to transform the original distribution of the features
into a tractable distribution in a 2D manner via a normalis-
ing flow methodology. In the inference phase, when the nor-
mal images and abnormal images simultaneously occur, the
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Figure 2. The proposed architecture for anomaly detection.
features of normal images will project within the centre of
the distribution, while abnormal image features will project
far from the centre of the distribution, indicating their ab-
normality. In simple terms, the probability value of each
position on the 2D feature manifold is directly employed as
the anomaly score.

RD [10]: Anomaly detection via reverse distillation from
one-class embedding (RD) is based on a pre-trained teacher
network and a trainable student network and consists of
three sub-networks. The first is a pre-trained feature extrac-
tor (E). The next two are a one-class bottleneck embedding
(OCBE) and the student decoder network (D). During the
feature extraction stage, as the student network is trained
on a normal image dataset, its feature representation of im-
age anomalies is expected to be distinct from that of the
teacher network. During training, it forces the output to be
similar to the corresponding feature extractor layers by us-
ing cosine distance as the inter-feature loss metric. In this
way, it is able to improve the similarity of student-teacher
(S-T) representations on normal images, whilst at the same
time being capable of differentiating anomalous image ex-
amples. Finally, in the inference phase, when both normal
images and abnormal images occur, the cosine distance be-
tween the resultant feature maps can be used to indicate the

presence of anomalies.
GANomaly [3]: Semi-supervised anomaly detection via

adversarial training (GANomaly) calculates the reconstruc-
tion error based on the latent feature representation (z) and
reconstructed latent feature representation (z′) by adding an
additional encoder structure to a conventional Generative
Adversarial Network (GAN) architecture. During training,
the model aims to learn the distribution of the normal (non-
anomalous) data set by minimizing the difference between
the two latent feature representations. Subsequently, at in-
ference time, an anomaly score is derived from the L2 dis-
tance between the two latent feature representations.

STFPM [48]: Student-teacher feature pyramid match-
ing for unsupervised anomaly detection (STFPM) consists
of a pre-trained teacher network and a student network
with an identical neural network architecture. The student
network learns by making feature maps similar to those in
the teacher network. Since training is performed only on
normal images, the student network can only output the
features of normal regions. In order to detect anomalies,
STFPM uses the difference between feature maps at
three different scales in the student and teacher networks.
Subsequently, at the inference phase, the final anomaly
score is calculated by multiplying the three maps with



the aggregation of anomalies at differing scales readily
contributing to the accurate detection of anomalies of
various sizes.

Each anomaly detection approach is trained over a set
of normal samples, {p | p ∈ Rh′×w′×3} constructed as a
spatiotemporal object representation, as per Section 3.1.

4. Evaluation
This section presents the dataset used for evaluation, imple-
mentation details and final experimental results.
4.1. Evaluation Dataset
The LTD dataset [33] consists of infrared (thermal) surveil-
lance imagery spanning 188 days in the period of 14th May
2020 to 30th of April 2021, with a total of 1689 two minutes
clips sampled at 1 fps with associated bounding box annota-
tions for 4 classes {Human, Bicycle, Motorcycle, Vehicle}.
The images are captured at a resolution of 288 × 384 cap-
tured through a period of 8 months using a Hikvision DS-
2TD2235D-25/50 infrared (thermal) camera (long wave-
length infrared (LWIR): 8 − 14 µm). The dataset spans
all hours of the day in a wide array of weather conditions
overlooking the harbour front of Aalborg, Denmark depict-
ing drastic changes in both object and scene appearance due
to seasonal conditions within a static security monitoring
context. Normal training samples are extracted via object
detection from infrared (thermal) images. Since the LTD
dataset does not provide information on which object is an
anomaly, we construct our own anomaly thermal dataset by
manually cropping anomalous objects from a video surveil-
lance scenario dataset [27], for validation purposes. In total,
we make use of 17,109 normal objects as training data for
the anomaly detection step.
4.2. Implementation Details
We follow the dataset protocol from [33] by choosing the
coldest day of the month (February) as the training set,
which exists in three variants: coldest day 13th of Febru-
ary, the corresponding week 13 − 20 of February, and the
entirety of February. In this experiment, we use the infrared
(thermal) video imagery from the coldest day of the month,
day 13th of February as the training dataset. We then in-
corporate optical flow by combining it with appearance in
the infrared (thermal) imagery, resulting in a 3-channel spa-
tiotemporal tensor representation for each object (i.e. 1 ×
thermal channel for spatial appearance; 2 × optic flow chan-
nels for horizontal and vertical motion magnitudes).

Since our anomaly detection is based on object-wise im-
age regions, we first extract a large number of object re-
gions by training a Faster R-CNN [38], pre-trained on MS-
COCO [26], over our set of normal objects using [7], and
therein only retain the bounding box localisation informa-
tion and discard the classification labels. We employ the
SGD optimiser and set the learning rate as 252× 10−3, the

momentum as 0.9 and the weight decay as 1 × 10−4. Fi-
nally, we train for 100 epochs with a batch size of 16.

We construct our training dataset using the cropped
object-wise image regions (i.e. bounding boxes) obtained
via the earlier Faster R-CNN approach, and combine each
with the corresponding optic flow for that image region, to
form the input set to our proposed anomaly detection model
training using [2].

All implementations and visualisation are conducted in
PyTorch [36] with a single NVIDIA 1080Ti GPU. All
CNNs used in the experiments were pretrained with Ima-
geNet. For fair comparison and consistency, we used the
same parameters for all experiments; the parameters follow
the defaults used in [2] or within the original work.

4.3. Quantitative Evaluation
The model performance is evaluated quantitatively through
the area under ROC (AUROC), Accuracy, F1 score, Pre-
cision and Recall at object level. We compare the use of
anomaly detection via classification-based (DFKDE [2]),
reconstruction-based (FastFlow [51], GANomaly [3]) and
student-teacher paired (RD [10], STFPM [48]) methods.

Anomalies are detected when the model output exceeds
a given threshold A(x) > ϕ. When performing anomaly
detection, image regions with scores below the calculated
threshold are considered normal and whilst regions with
scores above the threshold are considered as anomalies [2].

Table 1 compares anomaly detection performance based
on object appearance in infrared (thermal) imagery (only)
and when also combined with short-term object motion
characteristics (via optical flow, Section 3.2). In the first ex-
periment, anomaly detection performance in infrared (ther-
mal) imagery (IR) is used to provide benchmark perfor-
mance. The combination of infrared appearance and flow-
based motion characteristics (IR+Flow) produces superior
anomaly detection results than infrared appearance (IR)
alone. Statistically, we observe a significant increase in
performance given by student-teacher pair approach, both
RD method (0.468 ⇒ 0.912) and STFPM method (0.467 ⇒
1.000) respectively in AUROC. Whilst for Accuracy and F1
score, the highest performance jump is given by reconstruc-
tion based approach, GANomaly (0.853 ⇒ 0.999 and 0.914
⇒ 0.999) respectively. Meanwhile, in Precision and Recall,
a significant gain in performance is observed for RD (0.889
⇒ 0.972) and GANomaly (0.873 ⇒ 0.998) respectively.

Table 2 shows the comparison of mean anomaly score
on infrared appearance (IR) and combined appearance and
motion characteristics (IR+Flow) for threshold ϕ = 0.5. An
increase can be observed for FastFlow, GANomaly, RD and
whilst a comparable mean value for DFKDE is observed po-
tentially demonstrating a more pronounced separation be-
tween anomalous and non-anomalous samples with the use
of motion characteristics (IR+Flow). However, a perfor-
mance drop is observed for RD (0.859 ⇒ 0.709), despite



Table 1. LTD dataset: object-level performance of anomaly detection using only infrared object appearance (IR) and combined infrared
appearance and motion characteristics (IR+Flow) information.

DFKDE FastFlow GANomaly RD STFPM

IR IR+Flow IR IR+Flow IR IR+Flow IR IR+Flow IR IR+Flow

AUROC ↑ 0.980 0.998 0.984 0.999 0.788 1.000 0.468 0.912 0.467 1.000
Accuracy ↑ 0.924 0.988 0.944 0.999 0.853 0.999 0.867 0.975 0.826 1.000
F1 score ↑ 0.955 0.993 0.968 0.999 0.914 0.999 0.928 0.986 0.904 1.000
Precision ↑ 0.995 0.995 0.993 1.000 0.952 1.000 0.889 0.972 0.886 1.000
Recall ↑ 0.918 0.991 0.944 0.998 0.873 0.998 0.972 1.000 0.923 1.000

Table 2. LTD dataset: mean anomaly score of anomalous samples
using IR and IR+Flow information (at ϕ = 0.5).

Model Anomaly Score

IR IR+Flow

DFKDE 0.901 0.895
FastFlow 0.634 0.669
GANomaly 0.691 0.924
RD 0.859 0.709
STFPM 0.566 0.607

having performance increase in AUROC (0.468 ⇒ 0.912,
Table 1).

4.4. Qualitative Evaluation

Qualitative results are provided for all five of the selected
anomaly detection approaches, where normal object occur-
rences are shown in green and anomalous objects (e.g. large
vehicles, based on our training regime) are shown in red
with an associated anomaly score (in blue, normalised to
range 0→1).

Detected anomalous objects, not present in the train-
ing set, generally correspond to the appearance of non-
pedestrian objects (e.g. large vehicles) or unusual ob-
ject motion in the scene. For example, an unusual pedes-
trian motion could be people walking haphazardly, sudden
changes in walking speed or an unusual direction of motion
within the scene.

In Figure 3, we can observe that: 1) normal object oc-
currences such as pedestrians (Figure 3 - first row); and 2)
anomalous object occurrences, such as large vehicles (Fig-
ure 3 - first, second and third row); are all detected well. The
large delivery vehicle (Figure 3 - second row) and the large
construction vehicle (Figure 3 - third row) were detected as
anomaly instances since these are new objects observed by
the anomaly detection model. In addition, anomaly detec-
tion is observed to perform well on the anomalous objects
that contain normal pixels within their bounds. For exam-
ple, the overlap between the large delivery vehicle and the
normal walking pedestrian (Figure 3 - second row), con-
tributes to higher performance in F1-score across all models
in Table 1.

Figure 4 shows consecutive frames from one of the test

video sequences within the infrared (thermal) imagery LTD
dataset [33]. In the figure (Figure 4, upper) we observe that
anomaly detection via DFKDE and RD detect the large ve-
hicle object as anomalous whilst the pedestrian objects re-
main labeled as normal objects (denoted with green and red
bounding box annotation, respectively). However, in the
next consecutive frame (Figure 4, lower), only the DFKDE
approaches detect the large vehicle object as anomalous
when the portion of the vehicle within the frame is occluded
(as it departs the scene), whilst RD detects the same objects
as normal. Such factors contribute to the lower AUROC
performance for RD, as shown in Table 1.

Qualitative evaluation results are shown in Figure 5 us-
ing the combination of infrared (thermal) imagery and op-
tical flow information from the LTD dataset [33]. A visu-
alisation of the visual appearance of the infrared (thermal)
imagery (IR) and its corresponding motion characteristics,
obtained from optic flow (IR+FLOW), are additionally pre-
sented in Figure 5. Overall, the qualitative results in Fig-
ure 5 demonstrate that the combination of infrared (ther-
mal) imagery and optical flow magnitude components, as
a measure of short-term object motion characteristics, re-
duce the false positive rate for anomaly detection (as also
reflected in Table 1). In the first example (Figure 5, A and
D), the truck and construction plant vehicle are only de-
tected as anomalous when motion information included via
optical flow. In this example, the flow pattern on the large
vehicle (IR+FLOW) suggested that the vehicle is moving
towards the camera. In the second example (Figure 5, B),
the appearance (only) of pedestrian walking is detected as
normal. However, with motion information (IR+FLOW), it
manages to detect pedestrian walking in an unusual scene
direction as an anomaly. In the same example, there are
anomalous flow patterns drawn on the image (IR+FLOW),
suggesting that the pedestrian is walking at a high velocity.
In the third example (Figure 5, C), the truck appearance is
detected as normal whilst entering the frame in the infrared
(thermal) imagery (IR). However, with motion information
added (+Flow), it is correctly detected as an anomaly. In the
fourth example, it shows that the model still works well in
a crowded scene with pedestrians and an anomalous object
having similar intensities with the background (Figure 5, E).
In the fifth example, we can see that the model also gener-
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Figure 3. Detection of of normal object [left] denoted as green and anomalous object [middle,left] denoted as red.
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Figure 4. Detection in consecutive frames where a construction
plant vehicle (red box) is consistently detected as anomalous with
DFKDE (upper) but not with RD (lower) due to occlusion.

ates false alarms, by detecting normal pedestrian walking as
an anomaly (Figure 5,F).

By taking a closer look at such false positives, we
can observe that even normal pedestrian walking may
generate high velocity motion, due to periodic movement
of their limbs, although it is restricted to small regions
of the body. Therefore it can be determine that some
average walking motions may be detected as anomlous
under such conditions, giving rise to such false positive
results. Overall, most genuine anomalous objects appear
to generate associated anomalous flow patterns across the
entire object surface, as shown in all anomalous objects in
Figure 5.

Overall, these examples (Figures 3 / 5) illustrate the
performance of region-based anomaly detection in the
context of infrared (thermal) surveillance imagery and
the performance benefits from the dual use of both object
appearance and (short-term) motion characteristics.
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Figure 5. Detection of normal and anomalous object in infrared (thermal) imagery (IR) and its corresponding optical flow (IR+Flow)

5. Conclusion
In this work we present region-based anomaly detection in
an automated visual surveillance context, by proposing the
dual use of both appearance and short-term motion char-
acteristics across infrared (thermal) imagery. We evalu-
ate the performance of five semi-supervised anomaly de-
tection approaches spanning classification based (DFKDE),
reconstruction based (FastFlow, GANomaly) and student-
teacher pair (RD, STFPM) paradigms. Within this study,
we observe that the combination of infrared (thermal) ob-

ject appearance and short-term motion characteristics, re-
covered from optic flow, result in a notable improvement
in anomalous object detection performance then compared
to using infrared appearance alone.. We also qualitatively
demonstrate temporally consistent anomaly detection on a
per-object basis. Future work includes the use of tempo-
ral scene analysis to expand this use of automatic anomaly
detection towards anomalous behaviour detection within in-
frared (thermal) surveillance imagery.



Acknowledgment
This work was funded through the Defence and Security
Accelerator on behalf of the Nuclear Decommissioning Au-
thority.

References
[1] P. Adey, M. Bordewich, O.K. Hamilton, and T.P Breckon.

Region based anomaly detection with real-time training and
analysis. In Proc. Int. Conf. on Machine Learning Applica-
tions, pages 495–499. IEEE, December 2019. 1, 2, 3

[2] Samet Akcay, Dick Ameln, Ashwin Vaidya, Barath Laksh-
manan, Nilesh Ahuja, and Utku Genc. Anomalib: A deep
learning library for anomaly detection, 2022. 2, 3, 5

[3] Samet Akcay, Amir Atapour-Abarghouei, and Toby P
Breckon. Ganomaly: Semi-supervised anomaly detection
via adversarial training. In Asian conference on computer
vision, pages 622–637. Springer, 2018. 1, 2, 4, 5

[4] Ernesto L Andrade, Scott Blunsden, and Robert B Fisher.
Modelling crowd scenes for event detection. In 18th inter-
national conference on pattern recognition (ICPR’06), vol-
ume 1, pages 175–178. IEEE, 2006. 1

[5] J.W. Barker and T.P. Breckon. Panda: Perceptually aware
neural detection of anomalies. In Proc. Int. Joint Conference
on Neural Networks, pages 1–8. IEEE, July 2021. 1

[6] Toby P Breckon, Anna Gaszczak, Jiwan Han, Marcin L Eich-
ner, and Stuart E Barnes. Multi-modal target detection for
autonomous wide area search and surveillance. In Emerg-
ing Technologies in Security and Defence; and Quantum Se-
curity II; and Unmanned Sensor Systems X, volume 8899,
pages 172–191. SPIE, 2013. 2

[7] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 5

[8] Kai-Wen Cheng, Yie-Tarng Chen, and Wen-Hsien Fang.
Video anomaly detection and localization using hierarchi-
cal feature representation and gaussian process regression.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2909–2917, 2015. 2

[9] Kellie Corona, Katie Osterdahl, Roderic Collins, and An-
thony Hoogs. Meva: A large-scale multiview, multimodal
video dataset for activity detection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1060–1068, 2021. 2

[10] Hanqiu Deng and Xingyu Li. Anomaly detection via reverse
distillation from one-class embedding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9737–9746, 2022. 2, 4, 5

[11] Zhiwen Fang, Jiafei Liang, Joey Tianyi Zhou, Yang Xiao,
and Feng Yang. Anomaly detection with bidirectional con-
sistency in videos. IEEE Transactions on Neural Networks
and Learning Systems, 2020. 2

[12] Katerina Fragkiadaki, Pablo Arbelaez, Panna Felsen, and Ji-
tendra Malik. Learning to segment moving objects in videos.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4083–4090, 2015. 2

[13] Yona Falinie A Gaus, Neelanjan Bhowmik, Brian KS Isaac-
Medina, and Toby P Breckon. Visible to infrared transfer
learning as a paradigm for accessible real-time object detec-
tion and classification in infrared imagery. In Counterterror-
ism, Crime Fighting, Forensics, and Surveillance Technolo-
gies IV, volume 11542, pages 13–27. SPIE, 2020. 1, 2

[14] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 2

[15] Ryota Hinami, Tao Mei, and Shin’ichi Satoh. Joint detection
and recounting of abnormal events by learning deep generic
knowledge. In Proceedings of the IEEE international con-
ference on computer vision, pages 3619–3627, 2017. 2, 3

[16] Timothy Hospedales, Shaogang Gong, and Tao Xiang. A
markov clustering topic model for mining behaviour in
video. In 2009 IEEE 12th International Conference on Com-
puter Vision, pages 1165–1172. IEEE, 2009. 2

[17] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi,
and In So Kweon. Multispectral pedestrian detection:
Benchmark dataset and baseline. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1037–1045, 2015. 2

[18] Radu Tudor Ionescu, Fahad Shahbaz Khan, Mariana-Iuliana
Georgescu, and Ling Shao. Object-centric auto-encoders and
dummy anomalies for abnormal event detection in video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7842–7851, 2019. 2,
3
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 3

[55] Sijie Zhu, Chen Chen, and Waqas Sultani. Video anomaly
detection for smart surveillance. In Computer Vision: A Ref-
erence Guide, pages 1–8. Springer, 2020. 1, 3


