
Not Half Bad: Exploring Half-Precision in Graph
Convolutional Neural Networks

John Brennan ∗†, Stephen Bonner ∗, Amir Atapour-Abarghouei ∗,
Philip T Jackson ∗, Boguslaw Obara † and Andrew Stephen McGough ∗

∗School of Computing, Newcastle University, Newcastle, UK
{john.brennan, stephen.bonner3, amir.atapour-abarghouei, philip.jackson, stephen.mcgough}@newcastle.ac.uk

†Department of Computer Science, Durham University, Durham, UK
{j.d.brennan, boguslaw.obara}@durham.ac.uk

Abstract—With the growing significance of graphs as an
effective representation of data in numerous applications, efficient
graph analysis using modern machine learning is receiving
a growing level of attention. Deep learning approaches often
operate over the entire adjacency matrix – as the input and
intermediate network layers are all designed in proportion to the
size of the adjacency matrix – leading to intensive computation
and large memory requirements as the graph size increases. It is
therefore desirable to identify efficient measures to reduce both
run-time and memory requirements allowing for the analysis
of the largest graphs possible. The use of reduced precision
operations within the forward and backward passes of a deep
neural network along with novel specialised hardware in modern
GPUs could offer promising avenues towards efficiency. In this
paper, we provide an in-depth exploration of the use of reduced-
precision operations, easily integrable into the highly popular
PyTorch framework, and an analysis of the effects of Tensor
Cores on graph convolutional neural networks. We perform an
extensive experimental evaluation of three GPU architectures
and two widely-used graph analysis tasks (vertex classification
and link prediction) using well-known benchmark and synthet-
ically generated datasets. Thus allowing us to make important
observations on the effects of reduced-precision operations and
Tensor Cores on computational and memory usage of graph
convolutional neural networks – often neglected in the literature.

I. INTRODUCTION

Graphs, which represent a number of entities (referred to as
Vertices) and the links between these entities (referred to as
Edges), have become an indispensable tool for analysis of data
across many disciplines including social sciences, security and
medicine. We define a graph G = (V,E) as a set of vertices
V , with a corresponding set of edges E. E is composed
of unordered tuples u, v, where u, v ∈ V . Their ability to
represent the links between different entities makes them
a more natural representation for tasks such as identifying
relationships between different entities (link prediction) than
other data representation formats.

As in many other fields, deep learning is helping to revo-
lutionise the area of graph analytics. Historically, graphs have
been analysed through kernel-based methods [1], however,
recent advances in the area of Graph Convolutional Networks
(GCNs) have shown great promise for improved results. Al-
though other approaches towards graph analysis have subse-
quently been developed, these have yet to diminish the need
for GCNs [2]. A GCN layer is a learnable non-linear function

of the vertex features from the previous layer (represented as
a matrix) and the adjacency matrix1 for the graph. As such,
GCNs are almost entirely constructed from matrix operations
and hence well amenable to GPU acceleration.

One of the main drawbacks to the use of GCNs is the
memory footprint. Unlike other forms of Deep Learning where
only a subset of the data ever needs to be processed at any
given point in time, a GCN operates on the entire adjacency
matrix – i.e. the entire graph – at each step. This limits the size
of the graph which may be operated upon. This is compounded
by the fact that most GCN functions comprise of a number of
matrices of commensurate size to the adjacency matrix.

The use of reduced-precision computation, most often com-
bining half and full precision floating-point values, has been
demonstrated to be beneficial within other areas of deep learn-
ing, significantly reducing memory requirements and train-
ing time while improving performance [3]–[5]. As memory
requirements are the biggest limitation to GCNs, applying
reduced-precision computations would seem an obvious line
of attack in order to process larger and more complex graphs.

Recent advances in GPU technology have led to the in-
troduction of Tensor Cores, which enable dynamic adaptation
of mixed-precision floating-point computations. These allow
for acceleration of Deep Learning and, according to NVIDIA,
can provide up to ten times speed up [6]. This, again, could
be most useful when training larger GCNs.

In this work, we implement four levels of optimisation,
with respect to the floating-point precision levels used in the
forward and backward passes of the network, on two types of
GCNs – a standard GCN and a Graph Convolutional Auto-
Encoder (GAE) – in order to evaluate the advantages and dis-
advantages of each optimisation level. Our experiments range
from using no optimisation (full precision for all operations)
through to everything performed and stored in half precision.
In order to make use of the Tensor Cores, certain model
parameters, including input size, need to be divisible by 8.
We therefore evaluate results both with and without padding
the data to be a multiple of 8.

Based on prior literature which used reduced precision in

1An adjacency matrix A is an n by n matrix, where n is the number of
vertices in the graph. [a, b] = 1 indicates an edge between vertices a and b.

deep learning, such as computer vision and natural language
processing, one would Naı̈vely assume that learning-based
graph analysis tasks would see reduced memory requirements,
faster training times and perhaps even improved predictive
performance – with the desire that memory reduction be the
most significant. As such, we set these as our hypotheses for
this work and design the experiments accordingly to evaluate
the validity of each point. We use the real-world Cora2 dataset
and to allow the scaling of graphs to specific sizes, we also
generate synthetic graphs using the Barabási-Albert Model [7].

In short, the contribution of this paper is to answer the
following important questions with respect to the effects of
reduced-precision operations and Tensor Cores on graph-based
neural networks:
• Run-Time - Will using reduced-precision operations and

Tensor Cores lead to more efficient training time for
graph convolutional neural networks?

• Memory Usage - Will using reduced-precision operations
and Tensor Cores lead to reduced memory requirements
for graph convolutional neural networks?

• Predictive Performance - Will using reduced-precision
operations and Tensor Cores lead to an improvement,
degradation or no significant change in the predictive
performance of graph convolutional neural networks?

To the best of our knowledge, this is the first work to
conduct a comprehensive analysis of the effects of reduced
precision on graph convolutional neural networks. The code
is available at https://github.com/grossular/half-precision-gcn.

II. BACKGROUND AND MOTIVATION

The introduction of Tensor Cores, in the NVIDIA Volta
GPU microarchitecture [8], improved deep learning perfor-
mance in comparison to conventional CUDA cores. Tensor
Cores enable mixed-precision computing (allowing operations
to be performed in either half or full-precision), dynamically
adapting calculations to accelerate throughput while preserv-
ing the accuracy. It is claimed that this technology can provide
up to 10× training speed up across a variety of workloads [6].

To take advantage of Tensor Cores workloads must use
mixed-precision computations. Deep learning traditionally uses
full-precision (FP32). However, demands from ever-larger
datasets and thus network architectures lead to longer training
times and higher memory requirements in order for the neural
network to converge – if indeed this is possible. Half pre-
cision (FP16) can address memory and computation issues.
However, FP16 has a narrower dynamic range than FP32
leading to significant loss of accuracy – potentially preventing
successful training. Mixed-precision operations are used to
address this – maintaining accuracy standards while taking
advantage of reduced computation and memory bandwidth.

Mixed-precision operations are not the only requirement
for using Tensor Cores – certain layer parameters (e.g. batch
size, input size, output size, number of channels) also need
to be divisible by 8, a requirement on how data is stored

2https://relational.fit.cvut.cz/dataset/CORA

and accessed in memory [9]. Tensor Cores primarily opti-
mise GEMM (General Matrix Multiplications), a fundamental
building block for many operations in neural networks, such as
fully-connected layers, recurrent layers and convolutional lay-
ers. Mixed-precision use of Tensor Cores has been extensively
investigated for various tasks such as computer vision and
natural language processing [3], [5]. However, the important
area of graph analysis has thus far been neglected.

We investigate the applicability of Automatic Mixed Pre-
cision (AMP) on two commonly-used graph network archi-
tectures (GCN and GAE). NVIDIA Apex [10] enables AMP
via PyTorch [11] – providing the primary framework for our
experiments. Apex AMP provides the opportunity to easily
experiment with different levels of precision, by selecting an
“optimisation level”. Four default AMP modes (optimisation
levels) are provided, briefly described in the following:

O0: Enables full-precision FP32 training. Neural network
weights and their corresponding operations are FP32. As this
makes no modifications, it can be used to establish a baseline.

O1: The most commonly-used AMP mode, places each
operation into one of two lists: a whitelist for all Tensor
Core-friendly operations (e.g. GEMM and convolutions), and
a blacklist for all others (e.g. non-linear operations, normal-
isations). Whitelist operations are performed in FP16 and
blacklist in FP32. Dynamic loss scaling is also important,
as activation gradient values during FP16 training need to be
scaled to preserve values that could otherwise be lost to zero.

O2: (“Almost-FP16 Mixed Precision”), casts the model
weights to FP16 but maintains a set of FP32 master weights.
The input data being fed through the network is cast to
FP16 but the optimiser acts directly on the FP32 weights.
Dynamic loss scaling is implemented as in O1. O1 and O2
are essentially different implementations of mixed precision
and their performance will depend on the type of data and the
operations involved in the network architecture.

O3: Enables full FP16 across all operations and as such
does not achieve the stability of O1 and O2 without algorith-
mic intervention or other special considerations – thus leading
to a loss of accuracy. Similar to O0, this mode is primarily
used to provide a baseline for the evaluation of other levels.

Our experiments will enable an accurate and detailed anal-
ysis of the effects of mixed precision on GCNs in terms of
predictive performance, memory footprint and run-time.

III. RELATED WORK

With the growing popularity of deep neural networks and
hence the increasing focus on training and inference efficiency,
the use of reduced precision has received significant attention
within the existing literature [3], [12]–[16]. For instance, there
have been attempts to binarise model weights and activations
while gradient calculation is kept within the full-precision
format [14]. In Rastegari et al. [17], even gradients are bina-
rised along with all other tensors in order to improve training
and inference efficiency in terms of both memory usage and
run-time. However, despite their impressive computational

efficiency, such approaches always lead to significant losses
in accuracy with larger model architectures.

To resolve the issue of accuracy loss, the majority of recent
works have shifted towards using at least 16 bits for data and
gradient computation. The approach proposed by Micikevicius
et al. [3] uses a 16-bit floating-point format accumulating
results into 32-bit arrays and ensures gradients with a small
magnitude are preserved via loss-scaling. Accuracy is also
maintained by Das et al. [4] and Köster et al. [18] using a
custom format with a 16-bit mantissa and a shared exponent
to train large neural networks. Despite their promising per-
formance, such approaches keep a 32-bit copy of the model
weights to enable precise weight updates and partial products
are accumulated in a 32-bit format.

In Wang et al. [16], 8-bit floating-point numbers are used
for both the numerical representation of the data and all
the computations required for the operations involved in the
forward and backward passes of the model. The approach
outlined by Mellempudi et al. [19] enhances the use of 8-bit
floating-point representation by compensating for the reduced
subnormal range of 8-bit floating-point representation for
improved error propagation, leading to better model accuracy.

It is important to note, however, that the use of any reduced-
precision approach, such as those reviewed above, heavily
depends on model size, input data modality and the nature of
the task. Extensive exploration and benchmarking of various
reduced-precision methodologies have been carried out for
Convolutional Neural Networks and Transformer models for
computer vision and natural language processing tasks [3], [5],
whilst the use of neural networks for graph-based applications
is not yet fully investigated. Consequently, in this paper, we
attempt to provide a detailed study of the use of mixed-
precision operations using specialised hardware for graph
convolutional neural networks.

IV. METHODOLOGY

The primary objective of this paper is to investigate how
graph-specific neural models are affected by the use of
reduced-precision operations. In order to achieve this, experi-
ments are run on real and synthetic graphs, over all available
optimisation levels, on hardware equipped both with and
without Tensor Cores. In the remainder of this section, we
give a brief overview of the neural network architectures used
in this work, before detailing the changes made for this study.

A. Graph Convolutions

Here, we introduce the basics of Graph Convolutional
Networks (GCN) [20] and detail how they may be affected
by the move to reduced precision. GCNs can be thought of as
differentiable functions for aggregating feature representations
from the neighbourhood of a given vertex [21]. For initial
input, a GCN-based model takes the normalised adjacency
matrix Â representing a graph G, and a matrix of initial vertex
level features X, and computes a new matrix of vertex level
features H = GCN(Â,X). Whilst X can be initialized with
pre-computed vertex features, it is common to initialize it with

one-hot feature vectors when no prior knowledge is available
(in which case, X is the identity matrix I). Each layer in a
GCN performs the following operation [20]:

GCN (l)(H(l), Â) = σr(ÂH(l−1)W(l)) , (1)

where l is the number of the current layer, W(l) denotes the
weight matrix of that layer, and H(l−1) refers to the features
computed at the previous layer or is equal to X at l = 0. σr
is the ReLU non-liner operation.

A GCN operation can be considered as performing a
weighted average of the neighbourhood features for each
vertex in the graph. Stacking multiple GCN layers has the
effect of increasing the number of hops from which a vertex-
level representation can aggregate information – a three-layer
GCN will aggregate information from three-hops within the
graph to create each representation.

One interesting thing to consider is the dimensionality of
the matrices involved in the GCN operation in Equation 1:
• The adjacency matrix, A, is of size Nv × Nv , where
Nv = |V | is the number of vertices in the graph.

• The input features matrix, X, is of size Nv × Fv , where
Fv is the number of features for each vertex. Where no
vertex features are present and the identity matrix I is
used, the dimensionality would again be Nv ×Nv .

• The parameter matrix, W, is of size Fv × d, where d is
the number of units in that layer.

Thus the number of model parameters is closely tied to the
size of the input features and the resulting output from each
layer in a GCN is bound by the number of vertices, in contrast
to computer vision models.

B. Graph Convolutional Auto-Encoders

GCNs are trained via supervised learning, where labels are
provided for a specific task – commonly vertex classification
[20], [21]. However, extensions have been made to allow for
convolutional auto-encoders for graph datasets, called Graph
Auto Encoders (GAE) [22]. An auto-encoders is a type of un-
supervised neural network, which compresses the input data
to a low-dimensional space, and then reconstructs the original
data from the learned representation. This is commonly per-
formed in order to use the resulting embeddings for the task
of link prediction [22]–[24].

Here, we consider a non-probabilistic version of the GAE,
where the goal is to learn a low-dimensional representation of
A from G, via an encoding from a GCN Z = GCN(A,X),
such that it can be used to accurately reconstruct the graph
via a product between Z and its transpose passed through an
element-wise logistic function σ:

A′ = σ(ZZT). (2)

C. Reduced Precision Changes

For the models used in this paper, we replicated the overall
architecture from the prior works [20], [22]. However, some
changes were required to ensure suitability for processing

using reduced precision. In order to take advantage of the
Tensor Cores, available on Volta and subsequent NVIDIA
GPU architectures, some padding of the input graph is required
under certain conditions. This is because Tensor Cores are
only activated when specific matrices involved in operations
for the forward and backward passed are divisible by 8, for
FP16 matrices, or 16, for INT8 matrices [9]. Due to this,
in our experiments, where an input matrix is observed to be
indivisible by 8, it is padded with zeroes to make it adhere
to this condition so that Tensor Cores can be fully utilised.
This padding can be thought of as additional vertices added
to the graph with no edges to itself or other vertices. These
added vertices are removed before the loss computation is
performed. We present an experimental evaluation of this
in Section VI to assess if this process has any negative
impact on predictive performance. Additionally, due to current
limitations in PyTorch3, all tensors needed to be cast to dense
matrices in order to be able to use reduced-precision modes.

V. EXPERIMENTAL SETUP

A. Datasets

Our experiments use two primary datasets: the real-world
benchmark Cora dataset [25] and a synthetic dataset using the
well-known Barabási-Albert Model graph generation model
[7]. The Cora dataset has been used for vertex classification
and link prediction in the original works on GCN [20] and
GAE [22], so was the ideal choice for assessing any predictive
performance changes due to the reduced precision. For observ-
ing run-time and memory-related metrics, synthetic Barabási-
Albert graphs are used as they reflect the scale-free nature of
many empirical graphs and allow us to precisely control the
number of vertices in the input graph [7].

B. Experimental Environment

The performance of the models is measured on three dif-
ferent compute systems, with three different generations of
NVIDIA GPU (Pascal, Volta and Turing). The V100 (Volta)
and Titan RTX (Turing) are both equipped with Tensor cores,
whilst the P100 (Pascal) has no dedicated 16-bit hardware.
The three test system are as follows:
• Pascal System - NVIDIA Tesla P100 GPU (16GB),

Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, 128GB

3https://github.com/pytorch/pytorch/issues/41069

pa
dd

in
g

fe
at

ur
es

to
ta

l_t
im

e

ro
c_

sc
or

e

ap
_s

co
re

m
ax

_m
em O0 O1 O2 O3

padding

features

total_time

roc_score

ap_score

max_mem

O0

O1

O2

O3

0.5

0.0

0.5

(a) GAE

pa
dd

in
g

fe
at

ur
es

to
ta

l_t
im

e

ac
c_

te
st

m
ax

_m
em O0 O1 O2 O3

padding

features

total_time

acc_test

max_mem

O0

O1

O2

O3

0.5

0.0

0.5

(b) GCN

Fig. 1: Correlation of predictive performance values on the
Cora dataset for the GCN and GAE models using the V100.

RAM, with Ubuntu 16.04, Python 3.7, CUDA 10.1,
CuDNN v7.6 and PyTorch 1.1.

• Turing System - NVIDIA Titan RTX GPU (24GB), In-
tel(R) i9-9820X, 64GB RAM, with Arch 5.7.9, Python
3.8, CUDA 10.2, CuDNN v7.6 and PyTorch 1.1.

• Volta System - NVIDIA Tesla V100 GPU (16GB), In-
tel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, 128GB
RAM, with Ubuntu 16.04, Python 3.7, CUDA 10.1,
CuDNN v7.6 and PyTorch 1.1.

C. Experiemnts

Two distinct sets of experiments are performed: firstly, we
measure any impact on the ability of the models to make
predictions accurately. Secondly, we assess the effect of half
precision on run-time and total GPU memory consumed.

For the predictive performance experiments, we measure
semi-supervised classification accuracy for the GCN, and Area
Under the precision-recall Curve (AUC) and Average Precision
(AP) for the link prediction task. These are the performance
metrics used to measure the performance of the models when
they were introduced [20], [22]. The model architecture and
primary hyperparameters are fixed and are also taken from the
original work and are kept constant across all GPUs, padding
and optimisation levels.

The run-time performance results are taken using synthetic
graphs so that the size can easily be controlled. This means that
all graph sizes are divisible by 8, thus no padding is required.
For these experiments, we trained models using the various
parameters detailed in Table I and measured both the memory
consumption and the total training time. Each combination of
parameters from Table I was repeated five times, each repeat
with a different random seed.

Parameter Value Range

Opt Level O0, O1, O2, O3
Use Features False, True
Model Size 16, 32, 64, 128, 256, 512, 1024, 2048
Num Vertices {x | 2048 ≤ x ≤ 215 ≡ 0 mod 1024}.

TABLE I: Model and synthetic data parameter ranges.

VI. EXPERIMENTAL RESULTS

In this section, we present the results of our experimental
evaluation as discussed in Section V. We begin by assess-

m
od

el
_s

ize

nu
m

_v
er

tic
es

fe
at

ur
es

to
ta

l_t
im

e

m
ax

_m
em OO

M O0 O1 O2 O3

model_size

num_vertices

features

total_time

max_mem

OOM

O0

O1

O2

O3

0.50
0.25

0.00
0.25
0.50
0.75

(a) GAE

m
od

el
_s

ize

nu
m

_v
er

tic
es

fe
at

ur
es

to
ta

l_t
im

e

m
ax

_m
em OO

M O0 O1 O2 O3

model_size

num_vertices

features

total_time

max_mem

OOM

O0

O1

O2

O3

0.50

0.25

0.00

0.25

0.50

(b) GCN

Fig. 2: Correlation of run-time experiment on the GCN and
GAE models using the V100.

0 10000 20000 30000 40000 50000
Number of Vertices

0

50

100

150

200

250

300

350

400

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

5000 10000150002000025000300003500040000
Number of Vertices

0

50

100

150

200

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

5000 10000150002000025000300003500040000
Number of Vertices

0

50

100

150

200

250

300

350

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Fig. 3: GCN total training time versus increases in graph size.

ing the effects of mixed-precision training on the predictive
performance of semi-supervised classification and link predic-
tion. We then measure the change in both run-time and the
maximum memory consumed on the GPU as the number of
vertices in the input graph and the model size is increased for
the various levels of reduced-precision optimisation.

A. Assessing Model Predictive Performance

We first evaluate how predictive performance is affected by
the move to reduced precision on the benchmark Cora dataset
[25]. To give a global view of the relationship between the
variables, Figure 1 presents the correlation matrices for both
the GCN and GAE approaches on the V100 GPU. It should
be noted that very similar results were observed for all cards.

The results demonstrating the performance of the various
cards for the GCN model, with (w) and without (w/o) the use
of padding, are presented in Table II. The results in this table
measure the classification accuracy on a holdout test set and
are presented as the difference, ∆, to the normal full-precision
mode, O0. It can be seen that the classification result are within
the error margin across all cards for opt levels O2 and O3
– meaning that mixed-precision training modes can be used
without adversely affecting predictive performance. However
as expected, the use of O3, complete 16-bit mode, causes a
significant drop in accuracy of 64.2% for the V100 GPU. The
results also show that the padding applied to the graph has no
significant impact on model accuracy – as expected.

The results for the task of link prediction using the GAE
model are presented in Table III. The results largely conform
to those presented for the GCN, with the use of O1 and
O2 having no significant impact on predictive performance
versus the full-precision baseline, and O3 causing significant
degradation. Again, it can be seen that the use of padding does
not impact performance.

B. Run-Time and Memory Usage Analysis

Here, we present the results measuring how run-time and
memory usage change as both the size of the input Barabási-
Albert graph and the model size are altered. For all results in
this section, unless otherwise stated, the identity matrix of the

GPU Opt Level ∆ Accuracy

w/ Padding w/o Padding

V100
O1 + 0.005 - 0.005
O2 + 0.005 - 0.003
O3 - 0.642 - 0.648

Titan RTX
O1 + 0.001 + 0.002
O2 + 0.003 + 0.004
O3 - 0.647 - 0.646

P100

O1 + 0.002 - 0.001
O2 + 0.004 0
O3 - 0.642 0.637

TABLE II: Comparison of the GCN classification results
on the Cora dataset using vertex features across GPUs and
optimisation levels. All elements indicate the difference, ∆,
between the values from Ox and O0, both with (w) and without
(w/o) padding.

GPU Opt Level w/ Padding w/o Padding

∆ AUC ∆ AP ∆ AUC ∆ AP

V100
O1 - 0.005 - 0.006 + 0.001 - 0.005
O2 0 0 + 0.001 0
O3 - 0.277 - 0.195 - 0.276 - 0.194

Titan RTX
O1 - 0.005 - 0.007 - 0.005 - 0.006
O2 0 0 0 0
O3 - 0.277 - 0.195 - 0.276 - 0.194

P100
O1 - 0.005 - 0.007 - 0.005 - 0.006
O2 0 0 0 0
O3 - 0.277 - 0.195 - 0.276 - 0.194

TABLE III: Comparison of GAE edge prediction results
on the Cora dataset using vertex features across GPUs and
optimisation levels. All elements indicate the difference, ∆,
between the values from Ox and O0, both with (w) and without
(w/o) padding.

graph is used as the input features. Additionally, the figures
are presented as the mean over five model seeds and either
all model sizes, for the case of the graph size plots, or all
graph sizes, for the case of the model size plots. Error bars
are presented as the standard deviation of these.

0 10000 20000 30000 40000
Number of Vertices

1

2

3

4

5

6

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

5000 10000 15000 20000 25000 30000 35000
Number of Vertices

1

2

3

4

5

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

5000 10000 15000 20000 25000 30000 35000
Number of Vertices

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Fig. 4: Speed up of the various opt levels versus O0 for the GCN approach.

5000 10000 15000 20000
Number of Vertices

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

2000 4000 6000 8000 1000012000140001600018000
Number of Vertices

0.5

1.0

1.5

2.0

2.5

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

2500 5000 7500 10000 12500 15000 17500
Number of Vertices

0.6

0.7

0.8

0.9

1.0

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Fig. 5: Speed up of the various opt levels versus O0 for the GAE approach.

To give an overview of how the various factors are related,
Figure 2 presents a correlation matrix for the run-time experi-
ments for both the GCN and GAE models running on the V100
GPU. Some unsurprising observations can be made across both
model types, for example the positive correlation between the
model size and the total training time. However, some perhaps
unexpected ones also arise - there is a clear positive correlation
between the training run being killed because of an Out Of
Memory (OOM) error and the use of opt level O1.

1) Measuring Run-Time and Memory Usage Versus Graph
Size: We now focus on measuring how the run-time and
memory usage are affected as the number of vertices in the
input training graph changes. Figure 3 demonstrates how the
run-time of the GCN model responds as the number of vertices
in the input graph is increased. Firstly, by comparing between
the two cards with Tensor Cores (Figures 3a and 3b) and the
one without dedicated 16-bit hardware (Figure 3c), the effect
at opt levels O1-O3 is immediately obvious. The P100 results
in Figure 3c show the opt level to have almost no impact on the
training time, whereas the other cards show a clear decrease in
run-time whenever a 16-bit mode is enabled. One interesting
observation is that the standard deviation (error bar) of each
point is much lower for the 16-bit opt levels. As each point is

presented as the mean over seeds and all the model sizes for
that graph size, this would indicate that opt levels O1-O3 are
less sensitive to model size when compared to the graph size.
This will be investigated further, when changes with respect
to model size are studied. Perhaps the most surprising result
is that O0, the full 32-bit training model, can scale to larger
graph sizes than the other levels. This is of note as intuitively
one would expect that the reduced-precision modes would use
less memory, and thus scale to a larger input dataset size –
however, this is clearly not the case. Further evidence of this
will be presented when we consider memory usage.

To further investigate how various opt levels affect perfor-
mance relative to the baseline of full precision, we present the
speed up of all opt levels relative to O0 for the GCN approach
in Figure 4. The figure highlights how mixed precision can
offer a large speed up for graph-based neural models, with the
proviso that the GPU has dedicated hardware support for the
operations. Figure 4c demonstrates that using mixed precision
when the GPU is lacking the 16-bit specific hardware can
actually result in a worse run-time overall, as illustrated by
the speed up value of below 1 across all opt levels.

We also highlight how the GAE model is affected by the
various optimisation levels, with Figure 6 showing the change

5000 10000 15000 20000
Number of Vertices

0

20

40

60

80

100

120

140

160

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of Vertices

0

20

40

60

80

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

2500 5000 7500 10000 12500 15000 17500
Number of Vertices

0

20

40

60

80

100

120

140

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Fig. 6: GAE total training time versus increases in graph size.

0 500 1000 1500 2000 2500 3000
Number of Vertices

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Total Time

0 500 1000 1500 2000 2500 3000
Number of Vertices

0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(b) Mem Usage

Fig. 7: A truncated view of the GAE results for the V100.

in total training time versus the input graph size. We can again
see in Figure 6c that using a mixed-precision training mode
offers no run-time benefit if the GPU lacks dedicated hardware
support. However, one clear trend is that, when compared to
the GCN model, the GAE does not show the same level of
decrease in run-time when mixed-precision training is utilised.
This is demonstrated by opt level O0 being much closer to
the mixed-precision modes, although it is still significantly
higher. Another continuing trend is the much lower run-time
variance over model sizes for the mixed-precision approaches.
To investigate at what graph size the mixed-precision modes
start to outperform the baseline, we present a truncated view of
the GAE results for the V100 in Figure 7a. The figure shows
that at a graph size of 1,000 vertices, opt levels O2 and O3
start to outperform O0, with O1 also outperforming it when
1,500 vertices is reached.

Figure 5 highlights the speed up from using mixed precision
with the GAE model. It shows that the speed up is on average
less than what was shown with the GCN approach. We suspect
this is due to the much more complex graph reconstruction loss
function required by the GAE approach, as this may not benefit
much from the use of reduced precision. Another interesting
trend in the figure is that the speed up is much more consistent

across graph sizes, with the average speed up being almost
identical from 4,000 to 18,000 vertices.

Our experiments also include an analysis of how the change
in the input graph size affects the maximum memory con-
sumed on the GPU during the training process, with results
across the three GPUs presented in Figure 8. There is one
clear and perhaps unintuitive result demonstrated across all
cards - using a reduced-precision mode of any kind results
in more memory usage when compared to full precision for
a given graph size. The result explains the earlier observation
that using a reduced-precision mode means that a smaller total
graph size can run when compared to opt level O0 – they
were running out of available memory sooner. It is interesting
to note that the results are highly consistent across all cards,
demonstrating that even when offering no performance benefit
on the P100, the reduced-precision modes O1-O2 are still
consuming the additional memory.

Figure 9 highlights how the maximum memory required for
the various opt levels changes with respect to the number of
vertices in the input graph. The figure highlights how, as was
true for the run-time, the mixed-precision opt levels are much
closer together with respect to the baseline here. It also re-
emphasises how similar the pattern of memory usage is across
the various cards – even on the P100 GPU. To analyse at what
point the memory usage of the mixed-precision approaches
starts to increase, Figure 7b presents a truncated view of the
memory usage for the V100 GPU. The figure shows by a graph
size of 1,000 vertices, opt level O1 is starting to demonstrate
more memory usage than the other optimisation levels.

2) Measuring Run-Time and Memory Usage Versus Model
Size: We now present results demonstrating how the perfor-
mance and memory consumption is affected by the model
size. Figure 10 shows the increases in model sizes against
the total training time. Conforming to the trend established
earlier, not using reduced precision results in large increases
in run-time as larger model sizes are used. Conversely, any
use of reduced precision means that the run-time is largely
unaffected by increases in the number of model parameters
– a very interesting observation. Figure 11 demonstrates the

0 10000 20000 30000 40000 50000
Number of Vertices

0

5

10

15

20

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(a) Titan RTX

5000 10000 15000 20000 25000 30000 35000 40000
Number of Vertices

0

2

4

6

8

10

12

14

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(b) V100

5000 10000 15000 20000 25000 30000 35000 40000
Number of Vertices

0

2

4

6

8

10

12

14

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(c) P100

Fig. 8: Maximum amount of GPU memory consumed during the training process across all cards for the GCN model.

5000 10000 15000 20000
Number of Vertices

0

5

10

15

20

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(a) Titan RTX

2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of Vertices

0

2

4

6

8

10

12

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(b) V100

2500 5000 7500 10000 12500 15000 17500
Number of Vertices

0

2

4

6

8

10

12

14

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(c) P100

Fig. 9: GAE max memory usage versus increases in graph size.

speed up of the various reduced-precision optimisation levels
against the full-precision baseline. The figure shows that the
potential speed up by using reduced precision continues to
increase as large model sizes are used, indeed, the speed-up
has not plateaued even with the largest size used. This suggests
that further experiments could be run to determine at what
point the speed up no longer increases.

Figure 12 illustrates how the various GPUs scale across
model sizes in the GAE approach. The overall trend is similar
to that of the GCN approach, with the full-precision mode
demonstrating a large and sharp increase in run-time as larger
model sizes are reached. However, one key difference is the
larger variance displayed at each point, meaning the run-time
for the GAE approach is more sensitive to the input graph size.
Figure 13 shows the speed up versus the full-precision baseline
for all cards. Two interesting trends can be observed from the
figure: firstly, the difference in speed up between the various
optimisation levels is reduced here versus the GCN results,
secondly the speed up is overall less for a given model size
than was shown for the GCN result. These results suggest that,
due to the complex graph reconstruction method used for the
model optimisation, GAE type models are more sensitive to

the input graph size than the overall model complexity. Further,
(c) shows that the impact of mixed-precision operations is
greatly reduced on hardware without dedicated tensor cores.

VII. CONCLUSION

In this work, we have attempted to provide a clear and
detailed analysis of the impact of using reduced-precision
computation and specialised GPU hardware designed for such
operations on graph-based neural networks. Tensor Cores,
introduced in modern NVIDIA GPU architectures, are capable
of enabling mixed-precision operations by dynamically adapt-
ing calculations to accelerate throughput while preserving
accuracy. While the effects of these improvements have been
thoroughly explored in various facets of machine learning,
such as computer vision and natural language processing,
definitive literature on graph convolutional neural networks,
which could theoretically benefit from reduced precision and
Tensor Cores, is sparse. In this vein, we perform compre-
hensive experiments to evaluate the effects of using mixed-
precision training on the predictive performance of both the
semi-supervised classification and link prediction tasks in
graph neural networks. We also measure the change in both
run-time and the maximum memory consumed on the GPU

102 103

Model Filter Size (Log)

0

50

100

150

200

250

300

350

400

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

102 103

Model Filter Size (Log)

0

50

100

150

200

250

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

102 103

Model Filter Size (Log)

0

50

100

150

200

250

300

350

400

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Fig. 10: Total training time as the model size is increased for the GCN model.

102 103

Model Size

1

2

3

4

5

6

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

102 103

Model Size

1

2

3

4

5

6

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

102 103

Model Size

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Fig. 11: Speed up of the various opt levels versus O0 for the GCN approach. Results presented using the large graph size that
was able to complete with all model sizes

as the number of vertices in the input graph and the model
size is increased for the various levels of reduced-precision
optimisation.

Our extensive experimental results provide answers to the
three original questions we pose in Section I concerning
reduced-precision operations. Regarding run-time, as expected,
our experiments demonstrate that using reduced-precision op-
timisation modes, taking advantage of Tensor Cores, reduce
run-time for all models training by a significant margin. This
points to the great advantage that reduced-precision and Tensor
Cores can provide, considering certain layer parameters are
divisible by 8. As for memory usage, our experiments indicate
an adverse impact of using automatic mixed precision on
graph convolutional networks. Using mixed precision (O1,O2)
increases memory usage compared to using full precision (O0)
or half precision (O3) operations. In terms of the predictive
performance of the models, we observe that using complete
half precision (O3) fully hampers the learning process and
unsurprisingly leads to a total model collapse, while using
mixed precision (O1,O2) indicates no significant change in
performance compared to the full-precision mode (O0).

While this work has been primarily focused on NVIDIA

Apex enabling automatic mixed precision via PyTorch, other
frameworks and libraries making use of various other forms of
reduced precision need to be fully investigated, which would
be an interesting trajectory for future work.

ACKNOWLEDGEMENT

We gratefully acknowledge the support of the Engineering
and Physical Sciences Research Council UK (EPSRC) for
funding (EP/M020576/1, 1444756).

REFERENCES

[1] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph
kernels,” Applied Network Science, vol. 5, pp. 1–42, 2020.

[2] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of
graph neural network evaluation,” Relational Representation Learning
Workshop, NeurIPS, 2018.

[3] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and
H. Wu, “Mixed precision training,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=r1gs9JgRZ

[4] D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha,
K. Banerjee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas,
A. Heinecke, P. Dubey, J. Corbal, N. Shustrov, R. Dubtsov, E. Fomenko,
and V. O. Pirogov, “Mixed precision training of convolutional neural
networks using integer operations,” ArXiv, vol. abs/1802.00930, 2018.

102 103

Model Filter Size (Log)

0

20

40

60

80

100

120

140

160

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

102 103

Model Filter Size (Log)

0

20

40

60

80

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

102 103

Model Filter Size (Log)

0

20

40

60

80

100

120

140

160

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Fig. 12: Total training time as the model size is increased for the GAE model.

102 103

Model Size

1.0

1.5

2.0

2.5

3.0

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

102 103

Model Size

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

102 103

Model Size

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Fig. 13: Speed up of the various opt levels versus O0 for the GAE approach as model size increases.

[5] O. Kuchaiev, B. Ginsburg, I. Gitman, V. Lavrukhin, J. Li, H. Nguyen,
C. Case, and P. Micikevicius, “Mixed-precision training for NLP and
speech recognition with OpenSeq2Seq,” arXiv:1805.10387, 2018.

[6] “NVIDIA Tensor Cores: Unprecedented acceleration for HPC and AI,”
https://www.nvidia.com/en-us/data-center/tensor-cores/.

[7] A.-L. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics
of random networks: the topology of the world-wide web,” Statistical
Mechanics and its Applications, vol. 281, no. 1, pp. 69–77, 2000.

[8] “NVIDIA Volta: The Tensor Core GPU architecture designed to bring AI
to every industry,” https://www.nvidia.com/en-us/data-center/volta-gpu-
architecture/.

[9] “NVIDIA deep learning performance,”
https://docs.nvidia.com/deeplearning/performance/, 2020.

[10] “NVIDIA Apex: Tools for easy mixed-precision training in PyTorch,”
https://developer.nvidia.com/blog/apex-pytorch-easy-mixed-precision-
training/.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8026–8037.

[12] B. Ginsburg, S. Nikolaev, and P. Micikevicius, “Training of deep
networks with half precision float,” in NVidia GPU Tech Conf., 2017.

[13] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, 2015, pp. 1737–1746.

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[15] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplications,” arXiv:1412.7024, 2014.

[16] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,

“Training deep neural networks with 8-bit floating point numbers,” in
Adv Neural Inf Process Syst, 2018, pp. 7675–7684.

[17] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
European Conference on Computer Vision, 2016, pp. 525–542.

[18] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof et al., “Flexpoint: An adaptive
numerical format for efficient training of deep neural networks,” in Adv
Neural Inf Process Syst, 2017, pp. 1742–1752.

[19] N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, “Mixed precision
training with 8-bit floating point,” ArXiv, vol. abs/1905.12334, 2019.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR), 2017.

[21] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[22] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS
Workshop on Bayesian Deep Learning, 2016.

[23] S. Bonner, A. Atapour-Abarghouei, P. T. Jackson, J. Brennan, I. Kureshi,
G. Theodoropoulos, A. S. McGough, and B. Obara, “Temporal neigh-
bourhood aggregation: Predicting future links in temporal graphs via
recurrent variational graph convolutions,” in 2019 IEEE International
Conference on Big Data. IEEE, 2019, pp. 5336–5345.

[24] S. Bonner, J. Brennan, I. Kureshi, G. Theodoropoulos, A. S. McGough,
and B. Obara, “Temporal graph offset reconstruction: Towards tempo-
rally robust graph representation learning,” in 2018 IEEE International
Conference on Big Data. IEEE, 2018, pp. 3737–3746.

[25] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International conference on ma-
chine learning. PMLR, 2016, pp. 40–48.

