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Abstract

Convolutional Neural Networks have demonstrated
dermatologist-level performance in the classification of
melanoma and other skin lesions, but prediction irregular-
ities due to biases seen within the training data are an issue
that should be addressed before widespread deployment is
possible. In this work, we robustly remove bias and spuri-
ous variation from an automated melanoma classification
pipeline using two leading bias ‘unlearning’ techniques. We
show that the biases introduced by surgical markings and
rulers presented in previous studies can be reasonably mit-
igated using these bias removal methods. We also demon-
strate the generalisation benefits of ‘unlearning’ spurious
variation relating to the imaging instrument used to capture
lesion images. Contributions of this work include the ap-
plication of different debiasing techniques for artefact bias
removal and the concept of instrument bias ‘unlearning’ for
domain generalisation in melanoma detection. Our exper-
imental results provide evidence that the effects of each of
the aforementioned biases are notably reduced, with differ-
ent debiasing techniques excelling at different tasks.

1. Introduction

In recent years, Convolutional Neural Networks (CNN)
have demonstrated performance levels on par with exper-
ienced dermatologists in skin lesion diagnosis [6, 7, 17].
This is particularly important since, when diagnosed early,
melanoma may be easily cured by surgical excision [18,
43], and so accessible and accurate diagnostic tools have
the potential to democratise dermatology and save numer-
ous lives worldwide.

While deploying such learning-based techniques far and
wide could be massively beneficial, great care must be taken
as any small pitfall could be replicated on a massive scale.
For example, some dermatologists use visual aids such as
skin markings to mark the location of a lesion, or rulers to

Figure 1: Examples of artefacts seen in ISIC 2020 data [33].
Top row shows images with surgical markings present, bot-
tom row shows images with rulers present.

indicate scale, as seen in Figure 1. In fact, Winkler et al.
[42, 43] demonstrated how bias induced by the presence of
these artefacts can result in diminished classification per-
formance. They also suggest that dermatologists avoid us-
ing these aids in the future, which is a valid solution to the
problem, though changing the habits of every dermatologist
is highly unrealistic and could potentially be detrimental to
their performance. Segmentation of the lesion from the sur-
rounding skin has also previously been proposed, but is not
a good option, since “any kind of pre-processing or seg-
mentation itself may erroneously introduce changes that im-
pede a CNN’s correct classification of a lesion” [42]. Crop-
ping surgical markings out of the image has been shown to
be effective at mitigating surgical marking bias in [43], but
it is noted this must be done by an experienced dermatolo-
gist to prevent the loss of important information, which is
costly and time-consuming.

Consequently, the alternative path towards diminishing
the effects of such artefacts would be not to remove the arte-
facts themselves from the image, but to reduce their influ-
ence on how the model functions, which translates to re-
moving the ‘bias’ these artefacts introduce into the learn-
ing process. As such, recent advances in debiasing archi-
tectures for CNNs [1, 24] present an excellent opportunity
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to robustly mitigate the aforementioned biases without any
need to alter the behaviour of physicians or pre-process the
image data.

Surgical artefacts left by physicians are not the only con-
cern when it comes to skin lesion classification, however.
Another issue that plagues many machine learning models
is the domain shift between the training and real-world in-
ference data, leading models to perform poorly upon de-
ployment. One cause of this domain shift in skin lesion
classification is likely to be spurious variation from minor
differences in the imaging instruments used to capture le-
sions. Inspired by [13], we propose also using ‘unlearning’
techniques [1, 24] for domain generalisation by removing
spurious variation associated with instrument type to create
a more generalisable, instrument-invariant model.

In summary, this work aims to explore bias and domain
‘unlearning’ towards creating more robust, generalisable
and fair models for melanoma classification. Code will be
released post-review to preserve anonymity. Our primary
contributions can be summarised as follows:

• Melanoma classification - The models presented in
this paper demonstrate impressive melanoma classific-
ation performance, beating the average performance of
experienced dermatologists on a benchmark dataset [7]
(Section 4.2).

• Artefact debiasing - We mitigate the bias introduced by
surgical markings and rulers, as shown in [42, 43] us-
ing ‘Learning Not to Learn’ [24] and ‘Turning a Blind
Eye’ [1] (Section 4.1).

• Domain generalisation - We demonstrate the general-
isation benefits of unlearning [1, 24] information re-
lating to the instruments used to capture skin lesion
images (Section 4.2).

2. Related work
We consider related work within two distinct areas,

namely artefact bias in skin lesion images (Section 2.1) and
domain generalisation (Section 2.2).

2.1. Artefacts bias

One of the problems addressed in this paper was invest-
igated in [8], which notes the algorithmic bias introduced
by certain artefacts present in skin lesion images. Further
precedent for investigating debiasing in skin lesion classi-
fication is found in [43], which compares the performance
of a CNN classification model on 130 lesions without sur-
gical markings present, versus the same 130 lesions with
surgical markings present. Strong bias was demonstrated,
with specificity hit hard, as well as Area Under the Curve
(AUC) [43]. Another work [42] shows a similar level of
bias caused by rulers in skin lesion images.

Segmentation of skin lesions from the surrounding
healthy skin has been suggested as a means of removing
artefacts from the input of skin lesion classification mod-
els in [23, 30]. However, this is not commonly used at the
time of writing, given that CNNs may utilise information
in the surrounding skin regions [4, 42] and so removing
this can impact classification performance. Artefacts them-
selves also often impede segmentation [29], and artefacts
that are on the lesion itself are not separable from the lesion
by image region.

In an earlier work, Bissoto et al. [5] tackle the issue of
artefact bias removal in a manner similar to the one pro-
posed in this work by using a model with seven debias-
ing heads [24] in an attempt to remove the bias caused by
seven artefacts. The authors conclude that the bias removal
method in [24] (‘Learning Not to Learn’) is not ready to
tackle the issue. However, ablation studies to isolate each
head are lacking, and so the efficacy of each of the seven in-
dividual debiasing heads cannot be ascertained. It is, there-
fore, possible that certain heads bring down the perform-
ance of the entire model, or interact with each other unfa-
vourably. In addition to this, the paper does not experiment
with other leading debiasing solutions such as the one pro-
posed in [1] (‘Turning a Blind Eye’), which may be more
effective at the given task.

In this work, we only focus on biases that are well doc-
umented as causing performance degradation, and compare
individual debiasing heads across different methods before
combining these heads. Bisotto et al. do note improvements
in performance when testing their debiasing models on data
with significant domain shift such as the Interactive Atlas
of Dermoscopy clinical data [27], which indicates some im-
provement in generalisation. We build upon this notion in
our domain generalisation experiments (Section 4.2).

2.2. Domain generalisation

A common assumption in machine learning is that the
training and test data are drawn from the same distribution,
though this assumption does not usually hold true in real-
world applications [10]. For instance, inconsistencies in
prostate cancer classification performance between image
samples originating from different clinics is shown in [2],
and the authors hypothesise that this could be due to domain
shift caused by variation in the equipment used. In skin
lesion classification, there are two main imaging methods:
dermoscopic (skin surface microscopy), and clinical (stand-
ard photograph) [41] (see Figure 2). This domain shift has
been shown to impact model performance in [14]. Addi-
tionally, within these two imaging methods, many different
brands and models of instrument are used by different clin-
ics, which may also introduce domain bias. Supporting this
hypothesis, it is shown in [22] that CNNs can easily dis-
criminate between camera models, which can lead models
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Figure 2: Illustration of the domain shift between clinical
and dermoscopic images [27] of the same lesion. Top row
shows dermoscopic images, bottom row clinical.

to overfit to this spurious variation during training.
Domain adaptation methods have been successfully used

to minimise the distance between the underlying distribu-
tions of the training and test datasets, i.e. a model trained on
a given dataset (source distribution) is enabled to perform
well on a different dataset (target distribution) via domain
adaptation [3, 10, 14, 15]. However, such methods require
knowledge of the target distribution, which is not always
readily available. Domain generalisation, on the other hand,
is more robust than domain adaptation, and differs in that
the target domain is unseen [25], aiming for improved per-
formance on a wide range of possible test data. In this work,
we explore applying bias unlearning techniques [1, 24] to-
wards domain generalisation in melanoma classification, at-
tempting to find an instrument-invariant feature representa-
tion without compromising performance.

3. Methods
In this work, two leading debiasing techniques within

the literature are used, namely ‘Learning Not To Learn’
(LNTL) [24] and ‘Turning a Blind Eye’ (TABE) [1]. Both
of these are often referred to as ‘unlearning’ techniques be-
cause of their ability to remove bias from the feature rep-
resentation of a network by minimising the mutual inform-
ation between the feature embedding and the unwanted bias.
Further details of these unlearning methods are described in
Sections 3.1 and 3.2.

3.1. Learning Not to Learn

‘Learning Not to Learn’ (LNTL) [24] proposes a novel
regularisation loss combined with a gradient reversal layer
[13] to remove bias from the feature representation of a
CNN during backpropagation. Figure 3 shows a generic
overview of the LNTL architecture. The input image, x, is
passed into a feature extractor, f : x→ RK , where K is the
dimension of the embedded feature. The feature extractor
is implemented as a pre-trained convolutional architecture

such as ResNeXt [20] or EfficientNet [39] in this work. The
extracted feature embedding is then passed in parallel into
both g: RK → Y and h: RK → B, the primary and auxil-
iary classification heads respectively, where, in the case of
this work, Y represents the set of possible lesion classes and
B represents the set of target bias classes.

The networks f and h play the minimax game, in which
h is trained to classify the bias from the extracted feature
embedding (minimising cross-entropy), whilst f is trained
to maximise the cross-entropy to restrain h from predict-
ing the bias, and also to minimise the negative conditional
entropy to reduce the mutual information between the fea-
ture representation and the bias. The gradient reversal layer
between h and f acts as an additional step to remove in-
formation relating to the target bias from the feature repres-
entation. The gradient reversal layer works by multiplying
the gradient of the auxiliary classification loss by a negat-
ive scalar during backpropagation, causing the feature ex-
traction network, f , to ‘learn not to learn’ the targeted bias,
b(x), rather than learn it. By the end of training, f has learnt
to extract a feature embedding independent of the bias, g has
learnt to use this feature embedding to perform the primary
classification task without relying on the bias, and h per-
forms poorly at predicting the bias due to the lack of bias
information in the feature embedding.

The minimax game along with the main classification
loss are formulated as:

min
θf ,θg

max
θh

Ex̃ PX(·)[Lg(θf , θg)︸ ︷︷ ︸
(a)

+ λEb̃∼Q(·|f(x̃))[logQ(b̃|f(x̃))]]︸ ︷︷ ︸
(b)

− µLB(θf , θh)︸ ︷︷ ︸
(c)

,

(1)

where (a) represents the cross-entropy loss of the main clas-
sification head, (b) represents the regularisation loss and (c)
represents the cross-entropy loss of the auxiliary bias classi-
fication head. The hyperparameters λ and µ are used to bal-
ance the terms. The parameters of each network are denoted
as θf , θg and θh. An auxiliary distribution, Q, is used to ap-
proximate the posterior distribution of the bias, P , which is
paramaterised as the bias prediction network, h.

3.2. Turning a Blind Eye

Figure 4 shows a generic overview of the ‘Turning a
Blind Eye’ (TABE) [1] architecture. Similar to LNTL [24],
this method also removes unwanted bias using an auxili-
ary classifier, θm, where m is the m-th unwanted bias. The
TABE auxiliary classifier minimises an auxiliary classific-
ation loss, Ls, used to identify bias in the feature repres-
entation, θrepr, as well as an auxiliary confusion loss [40],
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Figure 3: ‘Learning Not to Learn’ architecture. Feature ex-
tractor, f , is implemented as a convolutional architecture
such as ResNeXt or EfficientNet in this work. ‘fc’ denotes
a fully connected layer.

Lconf, used to make θrepr invariant to the unwanted bias.
Since these losses stand in opposition to one another, they
are minimised in separate steps: first Ls alone, and then
the primary classification loss, Lp, together with Lconf. The
confusion loss is defined as follows:

Lconf,m(xm, ym, θm; θrepr) = −
∑
nm

1

nm
logpnm, (2)

where xm is the input, ym is the bias label, pnm is the soft-
max of the auxiliary classifier output and nm is the num-
ber of auxiliary classes. This confusion loss works towards
finding a representation in which the auxiliary classification
head performs poorly by finding the cross entropy between
the output predicted bias and a uniform distribution. The
complete joint loss function being minimised is:

L(xp, yp, xs, ys, θp, θs, θrepr) = Lp(xp, yp; θrepr, θp)

+ Ls + αLconf,
(3)

where α is a hyperparameter which determines how
strongly the confusion loss impacts the overall loss. The
feature extractor, f , is implemented as a pre-trained convo-
lutional architecture such as ResNeXt [20] or EfficientNet
[39] in this work.

As suggested in [24], a hybrid of LNTL and TABE can
be created by utilising the confusion loss (CL) from TABE
[1], and then also applying gradient reversal (GR) from
LNTL [24] to the auxiliary classification loss as it is back-
propegated to f . This configuration is denoted as CLGR in
this work.

3.3. Datasets

This section briefly describes the datasets used in the
experiments (see supplementary material Section B for ex-
ample images).

Feature Extractor (f )

Auxiliary
Classi�cation

(X)
(h)

Auxiliary
Confusion

(g)

fc Primary
Classi�cation

fc

Figure 4: ‘Turning a Blind Eye’ generic architecture. Fea-
ture extractor, f , is implemented as a convolutional archi-
tecture such as ResNeXt or EfficientNet in this work. ‘fc’
denotes a fully connected layer.

3.3.1 ISIC challenge training data

The International Skin Imaging Collabaration (ISIC) chal-
lenge [33] is a yearly automated melanoma classification
challenge with several publicly available dermoscopic skin
lesion datasets (see ISIC archive1), complete with diagnosis
labels and metadata. A combination of the 2017 and 2020
ISIC challenge data [9, 33] (35,574 images) is used as the
training data in this work due to the higher representation
of artefacts in these datasets than other competition years.
Pre-processed (centre cropped and resized) images of size
256×256 are used for all training and testing [12]. The sur-
gical markings are labelled using colour thresholding, with
the labels double-checked manually, while the rulers are la-
belled entirely manually. A random subset (33%, 3326 im-
ages) of the 2018 [9] challenge data is used as the validation
set for hyperparameter tuning.

The model and training data used in [42, 43] are propri-
etary, and so the bias in these studies could not be exactly
reproduced. Alternatively, since the primary objective is to
investigate the possibility of removing bias from the task,
we skew the ISIC data [9, 33] to produce similar levels of
bias in our baseline model to that shown in the aforemen-
tioned studies [42, 43]. Benign lesions in the training data
that had surgical markings are removed and images that are
both malignant and marked are duplicated and randomly
augmented (treating each duplicate as a new data point) to
skew the model towards producing false positives for le-
sions with surgical markings, thus reproducing the level of
performance shown in [43]. The dataset is processed sim-
ilarly with rulers to demonstrate ruler bias. The number of
duplications of melanoma images with surgical markings
present, dm, and with rulers present, dr, are used as hyper-
parameters to control the level of skew in experiments. Note
that this artificially skewed data is only used to demonstrate
artefact debiasing (Section 4.1), and the original data is used
for all other experiments.

1https://www.isic-archive.com/
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3.3.2 Heidelberg University test data

The test set presented in [43] is used to evaluate the artefact
debiasing approach presented in this work (Section 4.1).
The dataset consists of 130 lesions: 23 malignant, 107 be-
nign. There are two images of each lesion in the set, one
without surgical markings present, and one with surgical
markings present. This allows a direct evaluation of the ef-
fect of surgical marking bias on the performance of a model,
as shown in [43]. The test set from the ruler bias study
[42] is not publicly available or shared, so the plain images
from [43] are superimposed with rulers to be used as test
images. The approach of superimposing rulers was valid-
ated as not statistically significantly different from in-vivo
rulers in [42].

3.3.3 MClass benchmark test data

The MClass public human benchmark introduced in [7] is
used as a test dataset for assessing domain generalisation
(Section 4.2), also providing a human benchmark. This
dataset comprises a set of 100 dermoscopic images and 100
clinical images (different lesions), each with 20 malignant
and 80 benign lesions. The dermoscopic and clinical image
sets were classified by 157 and 145 experienced dermatolo-
gists respectively, with their average classification perform-
ances published in [7]. The dermoscopic MClass data is
made up of images from the ISIC archive, some of which
were also present in the ISIC training data, so these were
removed from the training data to prevent data leakage.

3.3.4 Interactive Atlas of Dermoscopy and Asan data

Two additional test sets, the Interactive Atlas of Dermo-
scopy dataset [27], and the Asan test dataset [19], are used
to further test domain generalisation (Section 4.2). The At-
las dataset comprises 1,011 lesions across 7 classes, with
one dermoscopic and one clinical image per lesion. The
Asan test dataset comprises 852 clinical images across 7
classes of lesions. Whilst the ISIC training data [9, 33] is
mostly white Western patients, the Atlas and Asan datasets
seem to have representation from a broad variety of ethnic
groups, which provides a good test of a model’s ability to
deal with domain shift.

3.4. Implementation

All experiments are implemented in PyTorch [31] and
carried out using two NVIDIA Titan RTX GPUs in paral-
lel with a combined memory of 48 GB on an Arch Linux
system with a 3.30GHz 10-core Intel CPU and 64 GB of
memory. The baseline model is inspired by the winning
entry from the 2020 ISIC challenge [16], which utilises
the EfficientNet-B3 architecture [39], pre-trained on the Im-
ageNet dataset [11]. ResNet-101 [20], ResNeXt-101 [44],

DenseNet [21] and Inception-v3 [38] are each substituted
for EfficientNet-B3 to evaluate the optimal network for the
task, simultaneously testing the effectiveness of the debias-
ing techniques across different architectures.

Early experimentation showed ResNeXt-101 to be the
overall best performing architecture, as seen in Table 2, and
it is therefore used as the feature extractor in the domain
generalisation experiments. EfficientNet-B3 is kept as the
base architecture for surgical marking and ruler debiasing
since the baseline performance is closest to the unknown
proprietary model used in [43]. The primary and auxiliary
classification heads are implemented as a single fully con-
nected layer, as suggested in [24]. Stochastic gradient des-
cent is used across all models, ensuring comparability and
compatibility between the baseline and debiasing networks.

Following a grid search, the learning rate (searched
between 0.03 and 0.00001) and momentum (searched
between 0 and 0.9) are selected as 0.0003 and 0.9 respect-
ively (see Section D of the supplementary material for full
hyperparameter tuning results). The learning rate of the
TABE heads is boosted by a factor of 10 (to 0.003), as sug-
gested in [1], except when using multiple debiasing heads
since this seems to cause instability. The best performing
values of the hyperparameters α and λ in Equations Equa-
tion (1) and Equation (3) are also empirically chosen to be
α=0.03 and λ=0.01.

A weighted loss function is implemented for all auxiliary
heads to tackle class imbalance, with each weighting coef-
ficient, Wn, being the inverse of the corresponding class
frequency, c. Since the proportion of benign and malig-
nant lesions is highly imbalanced in the test sets, accuracy
proved not to be a descriptive metric to use. Instead, AUC
is used as the primary metric across all experiments, as is
standard in melanoma classification [16, 19, 26, 30], given
that it takes into account both sensitivity and specificity
across all thresholds and is effective at communicating the
performance when the target classes are imbalanced [28].
We use test-time augmentation [37, 38] to average predic-
tions over 8 random flips along different axes, applied to
all test images, to enable a fairer evaluation of our models.
The optimal number of epochs for training each architec-
ture on each dataset is chosen through analysis of the 5-fold
cross validation curves for the baseline models, selecting
the epoch at which the AUC reached its maximum or plat-
eaued (see Section 5 of the supplementary material).

4. Experimental results

The results of our artefact bias removal experiments are
presented in Section 4.1. We present the domain general-
isation experimental results in Section 4.2.
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4.1. Artefacts bias removal

We attempt to remove the bias caused by two artefacts
that have been shown to affect performance in melanoma
classification, namely surgical markings [43] and rulers [42]
(see Table 1 and Figure 5). Separate individually-skewed
training sets are used with skew levels set at dm=20 (du-
plications of images with surgical markings) for examining
the removal of surgical marking bias and dr=18 (duplica-
tions of images with rulers) for ruler bias. We use surgical
marking and ruler labels as the target for the debiasing heads
in each of these experiments respectively.

Each model is trained and evaluated 6 times using 6 dif-
ferent random seeds, allowing the mean and standard de-
viation to be reported. The high scores are due to the in-
herent clarity of the cues within the images and consequent
simplicity of the classification of the test set [43], and are
consistent with the scores reported in [42, 43]. Any chance
of a leak between the test set and the ISIC training data
has been ruled out [43]. Despite the ease of classification,
both the existence of bias and the effectiveness of bias mit-
igation can still be demonstrated, and experiments using the
original test set [43] provide direct evidence that we are able
to mitigate the problem presented in these studies [42, 43].
While the baseline model performs very well for the un-
biased images (Table 1 - ‘Heid Plain’), performance suffers
when this model is tested on the same lesions with either
artefact present, replicating the findings from [42, 43].

0.80

0.85

0.90

0.95

1.00

plain marked
test set

AU
C

model
baseline
LNTL
TABE
CLGR

0.80

0.85

0.90

0.95

1.00

plain rulers
test set

AU
C

model
baseline
LNTL
TABE
CLGR

Removal of surgical marking bias Removal of ruler bias

Figure 5: Comparison of artefact debiasing models against
the baseline, trained on artificially skewed ISIC data.

Figure 5 presents evidence that each debiasing method is
successful at mitigating artefact bias. LNTL is the most ef-
fective at unlearning surgical marking bias, achieving com-
parable performance to the baseline on the plain images
from Heidelberg University [43] (‘Heid plain’), and im-
proving on the baseline AUC by 0.055 (6.1% increase) on
the equivalent marked images from the same set (‘Heid
marked’). All three techniques also mitigate ruler bias
well, with CLGR being the most effective and showing a
0.127 increase in AUC compared to the baseline (15.3%
increase). The results of our experiments suggest that un-
learning techniques can be used to reduce the bias demon-
strated in [42, 43], but are not a perfect solution, given that

the artefacts still have a negative impact on performance.

4.2. Domain generalisation

Another significant issue within melanoma classification
is instrument bias, hindering the application of a trained
model to image data acquired via different imaging instru-
ments. We attempt to address this issue by removing instru-
ment bias from the model pipeline using unlearning tech-
niques [1, 24], with the aim of improving domain general-
isation. According to ISIC, image dimensions in [9, 33] are
a good proxy for the imaging instrument used to capture the
image2. These dimensions were used as the auxiliary target
for debiasing, attempting to remove spurious variation re-
lated to the imaging instrument from the feature represent-
ation. The vast majority (98%) of the ISIC training images
[9, 33] make up the first 8 ‘instrument’ categories, but there
are many outlier categories with a very small number of ob-
servations, which are discarded to prevent significant class
imbalance.

Table 2 compares the generalisation ability of each in-
strument debiasing method against the baseline. We test
the models on a number of datasets of differing distribu-
tions to test generalisation. We apply the debiasing heads
to several different model architectures (EfficientNet-B3
[39], ResNet-101 [20], ResNeXt-101 [44], DenseNet [21],
Inception-v3 [38]) and compare the results, allowing us to
select a champion architecture for further experimentation.
ResNeXt-101 is chosen for further experimentation since
it achieves the highest score on 3 out of the 5 test sets, as
seen in Table 2. TABE and CLGR (TABE with gradient
reversal) consistently outperform the baseline across all ar-
chitectures. On the MClass clinical test set, the CLGR head
is the difference between the model performing below the
dermatologist benchmark, and exceeding it (8.5% AUC in-
crease), highlighting the potential impact of these domain
generalisation methods.

In general, the greatest performance increases are ob-
served on the clinical test sets, likely due to the fact these
have the greatest domain shift compared to the dermoscopic
training set. The models utilising a LNTL head were less
successful, and even negatively impacted performance in
some cases. This highlights that a single technique should
not be applied in blanket fashion, as is done in [5], but rather
certain techniques may only be suitable for specific tasks
and datasets.

Figure 6 illustrates the benefits of using a TABE head
for instrument bias removal compared to the baseline model
(both ResNeXt-101), showing an 11.6% AUC improvement
on the Asan clinical test set [19] and a 6.6% increase on the
MClass dermoscopic test set [7]. TABE can be differenti-

2The ISIC were contacted in search of labels for the origin clinics of
their data and they pointed out the association between image dimensions
and origin.

6



Experiment (a) Surgical Marking Removal (dm=20)

Heid Plain Heid Marked

Baseline 0.990±0.002 0.902±0.013
LNTL† 0.991±0.005 0.957±0.023
TABE† 0.998±0.001 0.917±0.019
CLGR† 0.998±0.002 0.949±0.022

Experiment (b) Ruler Bias Removal (dr=18)

Heid Plain Heid Ruler

Baseline 0.999±0.000 0.831±0.022
LNTL‡ 0.997±0.001 0.874±0.031
TABE‡ 0.992±0.002 0.938±0.017
CLGR‡ 0.999±0.010 0.958±0.018

Table 1: Artefact debiasing: Comparison of unlearning techniques against the baseline, trained on skewed ISIC data. Scores
are AUC. ‘Heid Plain’ is free from artefacts while ‘Heid Marked’ and ‘Heid Rulers’ contain the same lesions with surgical
markings and rulers present. The † symbol indicates the use of surgical marking labels as target for the auxiliary head and ‡
indicates ruler labels.

Experiment Architecture Atlas Asan MClass

Dermoscopic Clinical Clinical Dermoscopic Clinical

Dermatologists — — — — 0.671 0.769

Baseline EfficientNet-B3 0.757 0.565 0.477 0.786 0.775
LNTL§ EfficientNet-B3 0.709 0.562 0.570 0.830 0.630
TABE§ EfficientNet-B3 0.811 0.629 0.685 0.877 0.889
CLGR§ EfficientNet-B3 0.761 0.562 0.656 0.882 0.838

Baseline ResNet-101 0.802 0.606 0.704 0.877 0.819
LNTL§ ResNet-101 0.776 0.540 0.766 0.817 0.748
TABE§ ResNet-101 0.746 0.541 0.617 0.809 0.808
CLGR§ ResNet-101 0.795 0.615 0.723 0.870 0.739

Baseline ResNeXt-101 0.819 0.616 0.768 0.853 0.744
LNTL§ ResNeXt-101 0.776 0.597 0.746 0.821 0.778
TABE§ ResNeXt-101 0.817 0.674 0.857 0.908 0.768
CLGR§ ResNeXt-101 0.784 0.650 0.785 0.818 0.807

Baseline DenseNet 0.775 0.559 0.655 0.851 0.695
LNTL§ DenseNet 0.760 0.548 0.750 0.859 0.689
TABE§ DenseNet 0.809 0.622 0.743 0.863 0.788
CLGR§ DenseNet 0.760 0.596 0.872 0.843 0.776

Baseline Inception-v3 0.762 0.528 0.671 0.784 0.605
LNTL§ Inception-v3 0.784 0.556 0.729 0.809 0.583
TABE§ Inception-v3 0.751 0.593 0.735 0.818 0.746
CLGR§ Inception-v3 0.722 0.537 0.775 0.847 0.706

Table 2: Domain generalisation: Comparing generalisation ability of each debiasing method across different architectures,
trained using ISIC 2017 and 2020 data [9, 33]. All scores are AUC. The ‘dermatologists’ row is the AUC scores from [7].
The § symbol indicates the use of instrument labels for the auxiliary head. Bold numbers are the highest score for that
architecture, underlined scores are the highest scores across all architectures.

ated from the baseline across each clinical test set, suggest-
ing this to be a good tool for domain generalisation between
dermoscopic and clinical data. Since both the training data
and the MClass dermoscopic [7] data are drawn from the
ISIC archive, the improved performance on this test set
suggests the benefits of instrument invariance even on data
drawn from a similar distribution. This is likely due to the
mitigation of domain bias caused by variation in the specific
type of dermoscopic instrument used.

We also experiment with using two debiasing heads,
each removing a different bias (either instrument, surgical
marking or ruler), with the aim of improving generalisation.

The best performing configurations are shown in Table 3.
Using a single TABE head to remove instrument bias is still
the most effective overall configuration. However, other
configurations perform best on two of the five test sets
(Table 3). For results across a more complete set of con-
figurations, please refer to Section 8 in the supplementary
material.

4.3. Ablation studies

Ablation was built into the experimentation process as
individual bias removal heads were implemented in isola-
tion before attempting combinations, and debiasing heads
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Figure 6: ROC curves for TABE [1] instrument debiasing
on ASAN clinical [19] (left), and MClass dermoscopic [7]
(right), with ResNeXt-101 as the base architecture. Trained
using ISIC 2020 [33] and 2017 data [9].

Experiment Atlas Asan MClass

Dermoscopic Clinical Clinical Dermoscopic Clinical

Dermatologists — — — 0.671 0.769

Baseline 0.757 0.565 0.477 0.786 0.775
TABE§ 0.817 0.674 0.857 0.908 0.768
CLGR‡ 0.818 0.610 0.760 0.886 0.882

TABE§+LNTL‡ 0.828 0.640 0.747 0.880 0.824

Table 3: Generalisation of ResNeXt-101 models trained us-
ing ISIC 2017 and 2020 data. The ‘dermatologists’ row is
the AUC scores from [7]. Instrument, surgical marking and
ruler labels represented by §, † and ‡ respectively.

were implemented both with and without gradient reversal.
Using a single head to unlearn instrument bias is found to be
more effective for generalisation than combining this head
with artefact bias removal heads.

TABE [1] both with and without the gradient reversal
layer (named CLGR with gradient reversal) has proven suc-
cessful for different tasks (Table 1, Table 2), but ablation
of the gradient reversal layer from LNTL [24] generally di-
minished performance, (see Table 4).

5. Limitations and future work

While we have demonstrated the impressive perform-
ance of unlearning techniques [1, 24] for artefact debiasing,
one drawback of such approaches is the need to manually
label these artefacts in each training image. These artefacts,
however, are often quick and easy to identify by untrained

Experiment Atlas Asan MClass

Dermoscopic Clinical Clinical Dermoscopic Clinical

LNTL 0.804 0.612 0.768 0.819 0.801
LNTL* 0.783 0.605 0.710 0.827 0.747

Table 4: Ablation of gradient reversal from LNTL using
ResNeXt-101 for removal of instrument bias. All scores are
AUC. Asterisk (*) represents ablation of gradient reversal.

individuals. Further research may look to uncover biases
caused by other artefacts in a similar manner to [42, 43]
and evaluate the effectiveness of unlearning techniques at
mitigating these. Future work could also incorporate an al-
gorithm which accurately labels artefacts and dynamically
changes the model architecture to apply the required bias
removal heads for the task.

As for potential improvements in domain generalisation,
image resolution cannot be universally assumed as a proxy
for imaging instrument across all datasets so we recommend
the actual instrument model be recorded as metadata when
collecting training data for melanoma classification. Further
research could include incorporating an instrument identi-
fication system which could provide labels for the image
acquisition instrument. Further work may also evaluate the
effectiveness of these debiasing techniques [1, 24] in im-
proving generalisation for diagnostic smartphone apps [32].

6. Conclusion
This work has compared and demonstrated the effect-

iveness of debiasing methods in the context of skin lesion
classification. We have successfully mitigated the surgical
marking and ruler bias presented in the work of Winkler et
al. [42, 43] in an automated manner using unlearning tech-
niques (Section 4.1). We have investigated the use of bias
removal models against a baseline model on two test sets
for each artefact bias, one comprising lesion images with
no artefacts present and one comprising the same lesion im-
ages with artefacts present. We have shown that the debias-
ing models perform on par with the baseline on the images
without artefacts, and better on the images with artefacts,
with the ‘Turning a Blind Eye’ [1] (plus gradient reversal)
model improving on the baseline AUC by 15.3% on the test
set with rulers present (Table 1). This suggests the addi-
tion of these debiasing heads leads to a model more robust
to each artefact bias, without compromising performance
when no bias is present. Utilising these techniques could be
an alternative to the behaviour change amongst dermatolo-
gists as suggested by Winkler et al. [42, 43].

We have also provided evidence of the generalisation be-
nefits of using unlearning techniques to remove instrument-
identifying information from the feature representation of
CNNs trained for the classification of melanoma (Sec-
tion 4.2). We have demonstrated this using the ISIC train-
ing data [9, 33], with image resolution as a proxy for the
imaging instrument. To test the generalisation capabilities
of our bias removal approaches, we have used five popular
skin lesion test sets with varying degrees of domain shift.
Utilising the ‘Turning a Blind Eye’ [1] debiasing head is
most effective, achieving improved performance across the
board, most notably inducing an 11.6% AUC increase com-
pared to the baseline on the Asan dataset [19]. Our mod-
els perform better than experienced dermatologists, consist-
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ently beating their average AUC score on the MClass test
sets [7]. Generalisation methods such as this are powerful
for ensuring consistent results across dermatology clinics,
and may have utility in the emerging diagnostic app space
[32], given that differences between smartphone cameras
are likely to introduce spurious variation in a similar man-
ner.
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Supplementary material

This section presents supplementary material that can be
referenced to enhance the readers’ understanding of the de-
tails of the work. We could not fit the general literature
review for skin lesion classification in the paper, so this is
presented in Section A. Samples of each training and test
dataset are illustrated in Section B, to give a feel for the
images present in each. Justification for our choice of met-
rics is given in Section C. Hyperparameter tuning results are
presented in Section D. Additional experimental results in
the form of ROC curves and tables that were not included
in the main paper can be found in Section E. Our attempt
at interpreting artefact bias using vanilla gradient saliency
maps [36] is presented in Section E.1.1.

A. Skin lesion classification

The task of classifying skin lesions using machine learn-
ing has received attention within the research community
since as early as 1988, initially using traditional machine
learning methods such as decision trees in combination with
segmentation [30]. Originally, lack of model sophistication,
compute power and quality data meant that performance
was not at the level of dermatologists. Like with many other
areas of computer vision, the rise of convolutional neural
networks and ever increasing compute power has seen the
performance of skin lesion classification models rapidly in-
crease to the point where there is evidence of machine learn-
ing techniques matching or even surpassing dermatologists
at the task [6, 17]. The power of deep learning to extract fea-
tures has meant many modern models perform best without
segmentation, and often use information in the surrounding
skin in the classification task [4].

Skin diseases can be separated into many classes. On
the most granular scale, skin diseases can be separated into
neoplastic and non-neoplastic conditions. A neoplastic con-
dition is an abnormal growth of cells known as a tumour,
while a non-neoplastic skin condition refers to any other
type of skin condition. We focus on neoplastic lesions in
this work. These neoplastic lesions can be separated into
benign (non-cancerous) and malignant (cancerous), which
is a very important classification to make, since cancerous
tissue has the ability to invade the rest of the body and ul-
timately cause fatality. On a more fine-grained level, le-
sions may be classified by specific disease, such as cyst,
basal cell carcinoma or melanoma. In terms of classific-
ation in machine learning, it is possible to use specific
diseases as classes for prediction, allowing malignancy to
be also inferred from this classification [16]. We opt for
the more common binary approach of classifying using be-
nign/malignant as classes.

B. Examples of data
Figure 7 shows a sample of the images from the ISIC

dermoscopic training data [9, 33], including some examples
of surgical markings and some examples of rulers.

(a) Benign (b) Malignant

Figure 7: Example images from the ISIC dermoscopic
training set [9, 33].

Figure 8 shows the class distribution for the surgical
marking and ruler labels in the ISIC data. The distribution
of artefacts is highly imbalanced, pointing to why weighted
loss functions were needed to stabilise training.
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Figure 8: Class distribution of artefacts in ISIC 2020 &
2017 training data [9, 33].

Figure 9 shows the distribution of image resolutions in
the ISIC dataset, following omission of outlier classes. As
suggested by the ISIC, these image resolutions can be used
as a proxy for the imaging instrument used to capture the
image.

Figure 10 shows a sample of the ‘Heid Plain’ images
from Heidelberg University [43]. These are dermoscopic
images collected by the university of a variety of neoplastic
lesions. Figure 11 shows a sample of the ‘Heid Marked’ im-
ages from Heidelberg university [43]. These are the same
lesions from ‘Heid Plain’, but with surgical markings either
applied in vivo (physically applied and images recaptured),
or electronically superimposed. Figure 12 shows a sample
of the ‘Heid Ruler’ images, which was made by electronic-
ally superimposing rulers onto the ‘Heid Plain’ images.

Figure 13 shows a sample of the ‘Interactive Atlas of
Dermoscopy’ [27] dermoscopic images, while Figure 14
shows the equivalent clinical images from the same set. The
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Figure 9: Class distribution of instruments in ISIC
2020/2017 combined data [9, 33]. Instruments inferred as
separate through image resolution.

Figure 10: Example images from the Heidelberg University
training set with no artefacts [43].

Figure 11: Example images from the Heidelberg University
training set with surgical markings [43].

Figure 12: Example images from the Heidelberg University
training set with superimposed rulers [43].

domain shift between clinical and dermoscopic images is
clearly illustrated: the skin/lesion can be seen in more detail
in the dermoscopic images due to the reduction in surface
shine.

Figure 15 shows a sample of the Asan [19] clinical test
set. This dataset is collected from the Asan medical centre,
Seoul, South Korea and so features predominantly South
Korean patients.

Figure 13: Example images from the Interactive Atlas of
Dermoscopy dermoscopic test set [27].

Figure 14: Example images from the Interactive Atlas of
Dermoscopy clinical test set [27].

Figure 15: Example images from the Asan clinical test set
[19].

Figure 16 shows a sample of the MClass [7] dermo-
scopic benchmark test set, and Figure 17 shows a sample
the MClass clinical benchmark test set. Both of these test
sets were sent to a number of experienced dermatologists
(157 for dermosocpic images, 145 for clinical images), who
attempted to classify the images, with AUC scores reported
in [7]. Since true AUC cannot be calculated for dichotom-
ous human predictions (we cannot adjust the threshold of
human predictions), the authors use the average of sensitiv-
ity and specificity as a pseudo AUC score.

Figure 16: Example images from the MClass dermoscopic
test set [7].

C. Metrics
The best evaluation metric for the task was carefully con-

sidered. We took into account the commonly used metrics
in similar studies, as well as the specific requirements of the
experiments.
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Figure 17: Example images from the MClass clinical test
set [7].

Sensitivity (recall) is a measure of the proportion of the
positive class that was correctly classified. Specificity is the
proportion of the negative class that was correctly identified.
These two metrics are defined as:

Sensitivity = True Positive
True Positive+False Negative

Specificity = True Negative
True Negative+False Positive

These are regularly used as metrics in the medical sciences,
since it is important to both identify disease (leading to cor-
rect treatment) and rule disease out (preventing unnecessary
treatment). In order to use these metrics, a threshold must
be set at which the output of a model (between 0 and 1)
is taken as a positive or negative classification. The de-
fault position for this threshold is 0.5, but this threshold
may also be adjusted towards finding an acceptable trade-
off between true positive, true negative, false positive and
false negative predictions. Analysing the receiver operating
characteristic (ROC) curve is a very useful way of finding
this threshold, as it visualises how sensitivity and specificity
vary over every possible threshold (see Figure 21 for ex-
ample ROC curves).

The area under this curve (AUC) can hence be used
as a single robust metric to evaluate the performance of
a model where sensitivity and specificity are important,
and where the threshold is open to adjustment (such as
melanoma classification) [28]. We avoid relying on ac-
curacy, sensitivity and specificity in this work, since these
all rely on the assumption of a selected threshold, and in-
stead use AUC as the primary metric, also plotting the ROC
curves. This is standard practice in melanoma classification
[16, 19, 26, 30].

We anticipate that the binary classification threshold
would then be selected by a medical professional to suit
their desired level of sensitivity and specificity. An AUC of
1 means the classifier is distinguishing positive and negat-
ive classes perfectly, and an AUC of 0.5 equates to random
chance. Anything less than 0.5 and there may be an issue
with the model or data labelling, since the model is actively
predicting the wrong classes; in fact, inverting the data la-
bels in this case would result in an AUC of over 0.5. We also

avoid relying on accuracy due to the imbalance between be-
nign/malignant lesions in the test sets meaning accuracy is
not as descriptive of performance as AUC.

D. Hyperparameter tuning
Table 5 shows the chosen number of epochs for training

each architecture for each dataset. These were chosen as the
point at which the AUC reached its maximum or plateaued.

Table 6 shows results of the grid search used to select
learning rate and momentum, searching between 0.03 and
0.00001 for learning rate and 0 to 0.9 for momentum. We
tune the baseline ResNeXt-101 model and also use these hy-
perparameters for the debiasing models to maximise cross-
comparability. Whilst we used 5-fold cross validation for
choosing the number of epochs, this was not computation-
ally feasible for the grid search, and so a random subset
(33%, 3326 images) of the 2018 [9] challenge data is used
as the validation set for hyperparameter tuning. With more
time and computational resources, we could have optimised
the number of epochs at the same time as these hyperpara-
meters. In hindsight, perhaps a random search rather than a
brute force grid search would have allowed more exhaustive
tuning within the computational limitations but it is import-
ant to note that the optimal performance is not the primary
focus of this paper and as such, a detailed hyperparameter
tuning procedure does not significantly contribute to the ob-
jectives of this paper.

Training dataset Architecture Epochs

ISIC EfficientNet-B3 15
ISIC ResNet-101 6
ISIC ResNeXt-101 4
ISIC Inception-v3 5
ISIC DenseNet 6

Table 5: Optimal number of epochs for training, selected
through analysis of cross validation curves.

E. Additional results
E.1. Artefact bias removal

To label the artefacts in the training data, we attempt to
use colour thresholding to automatically label both surgical
markings and rulers. We set the script to separate the im-
ages into different directories for inspection. This method
is somewhat successful for identifying surgical markings.
However, by looking at the images labelled unmarked, we
see that some are not picked up, and so we also go through
and manually pick out the remainders. This method does
not work well at all for labelling rulers, likely due to the
fact that hairs have similar pixel values to rulers. As a res-
ult, we manually label each image for rulers. The manual
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LR Mom AUC

0.03 0 0.807
0.01 0 0.825

0.003 0 0.837
0.001 0 0.815

0.0003 0 0.783
0.0001 0 0.681
0.00003 0 0.469
0.00001 0 0.398

LR Mom AUC

0.03 0.3 0.824
0.01 0.3 0.826

0.003 0.3 0.852
0.001 0.3 0.820
0.0003 0.3 0.798
0.0001 0.3 0.727

0.00003 0.3 0.524
0.00001 0.3 0.409

LR Mom AUC

0.03 0.6 0.800
0.01 0.6 0.837
0.003 0.6 0.854
0.001 0.6 0.826

0.0003 0.6 0.809
0.0001 0.6 0.770

0.00003 0.6 0.627
0.0001 0.6 0.445

LR Mom AUC

0.03 0.9 0.789
0.01 0.9 0.834

0.003 0.9 0.848
0.001 0.9 0.843

0.0003 0.9 0.866
0.0001 0.9 0.814
0.00003 0.9 0.783
0.00001 0.9 0.681

Table 6: Hyperparamter tuning of baseline ResNeXt-101 model, trained for 4 epochs and using a random subset (33%, 3326
images) of the 2018 [9] challenge data is used as the validation set for hyperparameter tuning.

labelling process is not difficult to the human eye since these
artefacts are quite obvious and so this can be done quickly
and accurately.

Figure 18 shows the ROC plots from the surgical mark-
ing bias experiments. All models perform almost perfect
classification of the easy test set with no artefacts (Fig-
ure 18a). The test set with surgical markings present causes
performance to drop for all models. However, it is clear
from Figure 18b that the debiasing models are more robust
than the baseline, especially LNTL, which retains close to
the same AUC score across both test sets. Similarly, the
introduction of rulers into the lesion images also causes a
drop in the performance of all models (see Figure 19b).
The baseline is again affected most by this bias, with TABE
clearly most robust to it.

Although we choose to use AUC as the primary met-
ric rather than accuracy since accuracy depends on the
threshold set (qualified in Appendix Appendix C), Table 7
shows the accuracy scores that correspond to the AUC
scores in Table 1. These accuracy scores are calculated with
a threshold of 0.5. These accuracy scores also corroborate
that the debiasing techniques improve the models robust-
ness to artefact bias.

E.1.1 Saliency maps

Since artefact bias can be located by image region, we at-
tempt to identify whether the model is utilising the arte-
facts for classification by producing vanilla gradient sali-
ency maps [36]. This is a pixel attribution method and is de-
signed to highlight pixels that were most relevant for classi-
fication using a heatmap of the same resolution as the input
image. This method leverages backpropagation to calculate
the gradient of the loss function with respect to the input
pixels. These pixel-wise derivative values can then be used
to create a heatmap of the input image which highlights
the location of pixels with high values. We output saliency
maps for both the plain and biased images from [42, 43], to
see if the focus of the model shifts from the lesion to the

artefact (see Figure 20). It can be noticed in Figure 20 that
for the baseline, there are less highlighted pixels in the le-
sion region when surgical markings are present compared
to when there is not, and potentially more in regions that
correspond to surgically marked regions. When using the
LNTL model, the most salient pixels look to be located
back in the general image region of the lesion, indicating
the model has learned not to use the surgical markings for
classification.

This method is a simple saliency map technique and suf-
fers from certain issues, such as the ReLU activation func-
tion leading to a saturation problem [35]. For future work,
a more sophisticated technique like the GRAD-CAM post-
hoc attention method [34] may yield better quality visual-
isations.

E.2. Domain generalisation

Figure 21 shows the ROC curves corresponding to
Table 2. TABE and CLGR are able to be differentiated from
the baseline across most test sets, providing evidence that
these models generalise better than the baseline when re-
moving instrument bias.

Table 8 is the full version of Table 3. A single debias-
ing head removing instrument bias is shown to be generally
more effective than any combination of instrument, surgical
marking or ruler bias removal. This is more evidence that
combining debiasing heads can sometimes negatively im-
pact performance, perhaps explaining the poor performance
of the seven-head solution in [5].
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(a) No surgical markings present.
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LNTL (AUC = 0.984)
TABE (AUC = 0.908)
CLGR (AUC = 0.934)

(b) Surgical markings present.

Figure 18: Comparison between model performances with no surgical markings present (left) vs with surgical markings
present (right). EfficientNet-B3 trained on ISIC 2020 & 2017 data [9, 33], skewed to dm=20.
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(a) No rulers present.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1-specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(s

en
sit

iv
ity

)

ROC: Heid_Rulers

Baseline (AUC = 0.844)
LNTL (AUC = 0.871)
TABE (AUC = 0.941)
CLGR (AUC = 0.988)

(b) Rulers present.

Figure 19: Comparison between model performances with no rulers present (left) vs with rulers present (right). EfficientNet-
B3 trained on ISIC 2020 & 2017 data [9, 33], skewed to dr=18.

Experiment (a) Surgical Marking Removal (dm=20)

Heid Plain Heid Marked

Baseline 0.903±0.006 0.853±0.018
LNTL† 0.918±0.008 0.906±0.017
TABE† 0.928±0.023 0.836±0.058
CLGR† 0.927±0.021 0.915±0.015

Experiment (b) Ruler Bias Removal (dr=18)

Heid Plain Heid Ruler

Baseline 0.961±0.009 0.682±0.057
LNTL‡ 0.954±0.013 0.778±0.046
TABE‡ 0.955±0.009 0.835±0.030
CLGR‡ 0.963±0.005 0.899±0.002

Table 7: Comparison of each unlearning technique against the baseline, trained on artificially skewed ISIC data. ‘Heid plain’
test set is free of artefacts while ‘Heid Marked’ and ‘Heid Rulers’ are the same lesions with surgical markings and rulers
present respectively. All scores are accuracy (0.5 threshold).
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Figure 20: Vanilla gradient saliency maps [36] pointing to image regions most used by the model for classification. We
compare the baseline on an unbiased and biased image of the same lesion, and also the LNTL model on the same biased
image.

Experiment Atlas Asan MClass

Dermoscopic Clinical Clinical Dermoscopic Clinical

Dermatologists — — — 0.671 0.769

Baseline 0.819 0.616 0.768 0.853 0.744

LNTL§ 0.776 0.597 0.746 0.821 0.778
TABE§ 0.817 0.674 0.857 0.908 0.768
CLGR§ 0.784 0.650 0.785 0.818 0.807

LNTL† 0.737 0.589 0.631 0.731 0.799
TABE† 0.788 0.658 0.768 0.889 0.851
CLGR† 0.758 0.583 0.679 0.819 0.774

LNTL‡ 0.818 0.616 0.705 0.849 0.759
TABE‡ 0.813 0.667 0.679 0.865 0.846
CLGR‡ 0.818 0.610 0.760 0.886 0.882

LNTL§+LNTL† 0.789 0.588 0.704 0.849 0.796
TABE§+TABE† 0.807 0.629 0.779 0.859 0.810
LNTL§+TABE† 0.802 0.591 0.766 0.864 0.705
LNTL§+CLGR† 0.573 0.574 0.645 0.717 0.617
CLGR§+CLGR† 0.801 0.656 0.840 0.811 0.820
CLGR§+LNTL† 0.763 0.615 0.767 0.833 0.790
TABE§+LNTL† 0.823 0.629 0.787 0.881 0.781

LNTL§+LNTL‡ 0.786 0.604 0.686 0.837 0.779
TABE§+TABE‡ 0.806 0.612 0.783 0.827 0.794
LNTL§+TABE‡ 0.806 0.606 0.728 0.881 0.747
LNTL§+CLGR‡ 0.816 0.618 0.740 0.872 0.792
CLGR§+CLGR‡ 0.798 0.613 0.723 0.898 0.795
CLGR§+LNTL‡ 0.793 0.586 0.704 0.876 0.776
TABE§+LNTL‡ 0.828 0.640 0.747 0.880 0.824

Table 8: Domain generalisation: Comparison of generalisation benefits of using different targets for the debiasing heads
(ResNeXt-101), including some models with two debiasing heads. The ‘dermatologists’ row is the AUC scores from [7]. A
capital ‘D’ indicates the images are dermoscopic, while a capital ‘C’ means the images are clinical. The § symbol indicates
the use of instrument labels, † represents surgical marking labels and ‡ represents ruler labels.
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(a) Atlas dermoscopic.
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(b) Atlas clinical
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(c) Asan (clinical)
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(d) MClass Dermoscopic
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Figure 21: ROC curves for each debiasing method, with ResNeXt-101 as the base architecture, aiming to remove spurious
variation caused by the imaging instrument used. Model trained using the ISIC 2020 [33] and 2017 data [9] and tested on
five test sets [7, 19, 27].
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