A King’s Ransom for Encryption:
Ransomware Classification using Augmented
One-Shot Learning and Bayesian Approximation

Amir Atapour-Abarghouei, Stephen Bonner and Andrew Stephen McGough
School of Computing, Newcastle University, Newcastle, UK
{amir.atapour-abarghouei, stephen.bonner3, stephen.mcgough} @newcastle.ac.uk

Abstract—Newly emerging variants of ransomware pose an
ever-growing threat to computer systems governing every aspect
of modern life through the handling and analysis of big data.
While various recent security-based approaches have focused
on ransomware detection at the network or system level, easy-
to-use post-infection ransomware classification for the lay user
has not been attempted before. In this paper, we investigate the
possibility of classifying the ransomware a system is infected with
simply based on a screenshot of the splash screen or the ransom
note captured using a consumer camera commonly found in any
modern mobile device. To train and evaluate our system, we
create a sample dataset of the splash screens of 50 well-known
ransomware variants. In our dataset, only a single training image
is available per ransomware. Instead of creating a large training
dataset of ransomware screenshots, we simulate screenshot cap-
ture conditions via carefully-designed data augmentation tech-
niques, enabling simple and efficient one-shot learning. Moreover,
using model uncertainty obtained via Bayesian approximation,
we ensure special input cases such as unrelated non-ransomware
images and previously-unseen ransomware variants are correctly
identified for special handling and not mis-classified. Extensive
experimental evaluation demonstrates the efficacy of our work,
with accuracy levels of up to 93.6% for ransomware classification.

Index Terms—Machine Learning, Ransomware Classification,
Model Uncertainty, Bayesian Approximation, One-Shot Learning

I. INTRODUCTION

Due to the increasingly prominent role of the internet in
modern life, any malicious online activity needs to be detected
and carefully handled as many such activities can have dire
repercussions if not properly dealt with. Of the numerous
variants of malware spread for economic gain, ransomware
has recently received significant attention within the cyber-
security community. The substantial level of diversity among
ransomware variants gives considerable importance to a robust
classification system that could easily identify the ransomware
and guide the victims towards appropriate support.

While the existing literature contains numerous large-scale
ransomware classification and detection methods [1]], ran-
somware classification tailored towards the laypersons, which
make up the majority of targets, is scarce. In this paper,
we propose an image classification pipeline, which enables
any individual to identify the variant of ransomware they are
infected with based on a screenshot of the splash screen or the
ransom note casually captured using a consumer-grade camera,
such as those commonly found in any modern smartphone.

978-1-7281-0858-2/19/$31.00 (© 2019 IEEE

=

Fig. 1: Ransomware splash screens (fop), screenshots of splash
screens (middle) and unrelated screenshot images (bottom).

While modern image classification approaches [2]-[9] are
capable of achieving consistent high-accuracy results, they
often require large quantities of accurately-labelled data. For
our task, a large corpus of splash screen images needs to be
captured from various computer screens under different envi-
ronmental conditions (lighting, field of view, camera angle,
etc.) to simulate any future image capture and thus avoid
over-fitting. While one could simply accept the considerable
costs and resources required to create such a large dataset, we
circumvent this by recreating the conditions that lead to the ap-
pearance of a screenshot by means of carefully-designed image
transformations. In essence, our one-shot learning framework
is capable of classifying any image of a ransomware splash
screen captured using a camera by only ever seeing a single
original image for each class of ransomware. Our dataset thus
consists of a single image per variant of splash screen for
training and ten screenshots of said splash screen captured
using a mobile phone camera for testing (Figure |I)).

Additionally, neural-based classification approaches often
miss-classify inputs on which they have not been trained or
images sampled from distributions with slight deviations from
the training set. This means an off-the-shelf approach will
incorrectly classify any unrelated input (e.g. non-ransomware
images, images of new ransomware variants unknown to
the existing model, carefully-designed adversarial examples),
sometimes with a high degree of confidence. To remedy this,
we turn towards the recent advances in variational inference

))) I I B> s
256
256
128
64
16 32

Convolution . Dropout . Max-Pooling . Fully-Connected

Fig. 2: The custom architecture used in our experiments.

and its implications in calculating model uncertainty in neural
networks [10]-[13]. An estimate of model uncertainty enables
the network to reject irrelevant inputs sampled from outside
the distribution of the training data. The inclusion of model
uncertainty calculations in our pipeline requires its very own
evaluation methodology, for which purpose, we also include a
negative test set (Figure [T| - botrom) in our dataset to assess
our uncertainty values. This dataset consists of unrelated input
images which the model should be highly uncertain about. In
short, the primary contributions of this work are as follows:

e Ransomware Classification: We provide a pipeline that
enables a layperson to identify the ransomware they have
been infected with by taking a photograph of the screen
displaying the ransom note or splash screen.

e One-Shot Learning through Data Augmentation: We use
various data augmentation techniques to mimic the ap-
pearance of a screenshot given the original splash screen,
thereby enabling training on a single data point per class
with significant generalisation capabilities.

e Model Uncertainty via Bayesian Approximation: Using
various forms of Bayesian inference, we improve general-
isation and obtain model uncertainty to avoid classifying
unrelated images and unknown variants of ransomware.

To enable easier reproducibility, the source code, pre-trained

models and the dataset are all publicly available

II. RELATED WORK

We consider prior work over three areas, ransomware
classification and detection (Section [[I-A)), one-shot learning
(Section [[I-B), and Bayesian approximation (Section [[I-C).

A. Ransomware Classification and Detection

Traditionally, malware activities are detected at the network
level, system level or both [14]. For instance, anomalies can
be identified via static taint analysis [[15] or based on changes
in file type, similarities and entropy [16]. Learning-based ap-
proaches have also become prevalent in ransomware detection.
For example, this can be achieved by means of combining
a static detection phase prior to installation and a dynamic
method which investigates CPU, memory and network usage
[1]]. Vinayakumar et al. [[17] has also investigated the use of

Uhttps://github.com/atapour/ransomware-classification

fici it H
’H‘h\ N o .
", LY L e o
1"\.k."(e LY .
b S ", L
", Bt "‘-\.:! "“-\.
T -\g ""\-L\ \.L\
8 ™ L L
‘DenseNet-201 \ ‘DenseNeM 61 \ ‘ ShuffleNet-v2 ‘ ‘ Inception-V3 ‘

Fig. 3: Confusion matrices for our best-performing models
(DenseNet-201 [S]], DenseNet-161 [S[], Inception-V3 [6] and
ShuffleNet-V2 [7]) trained using our data augmentations.

neural networks with a focus on tuning the hyper-parameters
and the architecture of a very simple multilayer perceptron to
detect and classify ransomware activities.

While the use of machine learning has led to signifi-
cant improvements in the field of ransomware detection and
classification, such techniques are mostly tailored towards
integration into anti-virus and anti-malware applications. Our
proposed approach, however, mainly focuses on classifying
ransomware after the system has been infected based on an
image of the splash screen casually taken by any layperson.

B. One-Shot Learning

Recent advances in machine learning techniques have re-
sulted in remarkable strides in active areas of research, includ-
ing image classification, semantic understanding, and natural
language processing. However, one of the requirements of
such approaches is access to a large corpus of data for
extensive iterative training, which is often expensive, difficult
or intractable to obtain.

This has led to research with a focus on the daunting task of
training machine learning algorithms using one data point. The
seminal work by Fei et al. [[18] popularised the idea of one-
shot learning by proposing a variational Bayesian framework
for classification by leveraging previously-learned classes to
aid in the classification of unseen ones, inspiring various other
novel techniques tackling other domains and applications [[19].

Zhao et al. [20] directly leverage data augmentation for one-
shot learning. We similarly utilise a series of carefully-selected
data augmentation techniques to train a classification model
based on a single data point per class. We also rely on using
Bayesian inference to identify previously unseen new classes.

C. Model Uncertainty via Bayesian Approximation

In modern applied machine learning, uncertainty is gaining
an ever-increasing level of importance, mainly due to its capa-
bilities to detect and avert adversarial attacks, ensure system
safety in critical infrastructure and prevent failure in robotics
and navigation applications [21]], among others. Similarly, in
our work, uncertainty estimates can be a valuable tool that
can ensure new previously-unseen variants of ransomware or
completely irrelevant inputs, such as those mistakenly selected
by the user, are correctly identified, since explicit handling and
treatment is required for these special cases.

An effective technique widely used in the literature to cal-
culate model uncertainty is Bayesian inference, with dropout

https://github.com/atapour/ransomware-classification

Network é’;f;ra;;‘;l) Evaluation Metrics (higher, better) Network # Parameters Evaluation Metrics (higher, better)
g Accuracy F; Score AUC Accuracy F; Score AUC

SqueezeNet [4] X 0.640 0.622 0.816 Inception-V3 [6] 25,214,714 0.626 0.591 0.809
SqueezeNet [4] v 0.734 0.714 0.864 ShuffleNet-V2[7] 1,304,854 0.628 0.604 0.810
VGG-19 [2] X 0.670 0.661 0.832 VGG-19 2] 139,786,098 0.630 0.609 0.811
VGG-19 21 v 0.790 0.784 0.893 SqueezeNet [4] 748,146 0.634 0.613 0.813
ResNet-101 [37 X 0.782 0.773 0.889 ResNet-101 [3] 42,602,610 0.664 0.642 0.829
ResNet-101 [3: V4 0.876 0.872 0.937 MobileNet-V2[8] 2,287,922 0.666 0.648 0.830
MobileNet—VZ[Si X 0.804 0.799 0.900 ResNeXt-101 [97 86,844,786 0.674 0.659 0.834
MobileNet—V2[8: v 0.892 0.883 0.945 DenseNet-201 [5] 18,188,978 0.720 0.704 0.857
ResNeXt-101 [0 X 0.786 0.775 0.891 DenseNet-161 5] 26,582,450 0.744 0.734 0.870
ResNeXt-101 [9] v 0.898 0.896 0.948 Custom Network 1.875.666 0716 0.703 0.855
Inception-V3 [6) X 0.816 0.812 0.906 ustom Tetwor o0 ; ; ;
Inception-V3 [6] 4 0.906 0.904 0.952 . .
ShuffleNet-V2[7] X 0.774 0.764 0.885 TABLE II: Results of different architectures and our custom
ShuffleNet-V2(7 4 0.910 0.905 0.954 light-weight network on lower resolution images (128 x 128).
DenseNet-161 [5] X 0.816 0.806 0.906
DenseNet-161[5] v 0.928 0.926 0.963 . . .
DenseNet-201 [3 X 0848 0837 0917 approximated by .the. drgpout 1tse?lf does not deviate too far
DenseNet-201 [5 v 0.936 0.937 0.967 from the model distribution. In this paper, we make use of all

TABLE I: Classification results on higher-resolution (256 x
256) images using our data augmentation techniques.

[22] used as an approximation [10]. In such an approach,
the network is trained as dropout is applied to every weight
layer and during inference, neurons are randomly dropped
to generate samples from the model distribution. Gal et al.
[10] demonstrate that this is mathematically equivalent to the
probabilistic deep Gaussian process approximation [23]], with
the approach effectively minimising the Kullback-Leibler (KL)
divergence between the model distribution and the posterior of
a deep Gaussian process, marginalised over its finite rank co-
variance function parameters [[10]. To obtain better-calibrated
uncertainty that fits the nature of the data, the dropout rate
at each layer must be adapted to the data as a variational
parameter, often via an extensive grid-search [11] which can
be computationally-intensive and time-consuming.

Kingma et al. [[12] thus propose variational dropout, which
attempts to model Bayesian inference using a posterior fac-
torised over individual network weights w; € W g(w) =
N (6, ab?) for individual mean parameters 6; € 6. The prior
factorises similarly and is selected so the KL divergence
between the model distribution and the posterior ¢(W) is
independent of the mean parameters 6. They claim that this
reparametrisation maps uncertainty about the model weights
into independent local noise [[12]. An extension to Gaussian
multiplicative dropout [22] is also proposed that allows for
the dropout rate to be learned as a parameter. However, more
recent studies [13]] have demonstrated that the log-uniform
prior used for variational dropout [|12] may not lead to a proper
posterior, which means variational dropout is a non-Bayesian
sparsification approach and the uncertainty estimated based on
¢(W') may not follow the usual Bayesian interpretation.

Conversely, Gal et al. [11] resolve the issue of the im-
proper prior and posterior and propose the use of learnable
dropout rate parameters optimised towards obtaining better
uncertainty rather than maximising model performance. By
introducing a dropout regularisation term, which only depends
on the dropout rate, the approach ensures that the posterior

three approaches [10]-[12] to obtain uncertainty and assess
the performance and efficacy of each using our data.

III. APPROACH

As the objective is to classify a ransomware solely based
on an image of the splash screen captured using a consumer
camera, we train a classifier on the original image of the
splash screen. In this section, we will outline the details of our
dataset, data augmentation and the classification networks.

A. Training Dataset

We train our model on a dataset of splash screens from
50 variants of ransomware, with a single image of a splash
screen variant being available for each of the classes. However,
certain ransomware classes are associated with more than one
splash screen, which adds to the difficulty of the problem as
this leads to a training data imbalance and hence instability.

To test the performance of the approach, a balanced test
set of 500 images (10 images per class) is created by casually
taking screenshots of the ransomware images using two differ-
ent types of smartphone (Apple and Android) from 6 different
computer screens (with varying size, resolution, aspect ratio,
panel type, screen coating and colour depth). We call this
the positive test dataset as these images should be positively
identified as ransomware with low levels of uncertainty.

An additional set of 50 unrelated images are captured
from the same computer screens to evaluate the uncertainty
estimates acquired using our Bayesian networks. We refer to
this portion of our dataset as the negative test set, as the
model should be uncertain about these screenshot images
since they are not of, and therefore should not be classified
as, any ransomware known to the model. Examples from
our dataset can be seen in Figure [I}-bottom. Some of the
images in our negative test set are purposefully similar to
what a ransomware splash screen could look like to enable
a more rigorous evaluation of uncertainty estimates. Using
our carefully-selected augmentation techniques, we train the
models on our dataset of 66 images in 50 classes. We now
outline the details of our data augmentation techniques.

Augmentation Method Evaluation Metrics (higher, better)

Accuracy F; Score AUC

None 0.252 0.258 0.618
Contrast 0.386 0.379 0.687
Rotation 0.440 0.414 0.714
Brightness 0.404 0.402 0.696
Perspective 0.524 0.500 0.757
Motion Blur 0.338 0.348 0.662
Defocus Blur 0.324 0.324 0.655
Gaussian Blur 0.312 0.289 0.649
Random Noise 0.344 0.343 0.665
Random Occlusion 0.344 0.339 0.665
Colour Perturbations 0.330 0.325 0.658
All Augmentations 0.716 0.703 0.855

TABLE III: Numerical results demonstrating the importance of
the augmentation techniques (Section [[I[-B)) used for training.

B. Data Augmentation

Due to the existence of a single training image for each
splash screen variant, model generalisation is rather difficult
since the model would simply overfit to the training dis-
tribution and memorise the training images. This means a
model trained on our training dataset without any modification
would be incapable of classifying images captured under test
conditions from a computer screen (Section [[V-B].

To prevent this, a carefully-designed and tuned set of
image transformations is applied to simulate test conditions.
The hyper-parameters associated with these augmentation
techniques were determined using grid-searches which are
excluded here. The augmentation techniques are applied ran-
domly (both in terms of application and severity): (1) rotation:
of the image with the angle of rotation in the range [-90°,90°],
(2) contrast: changing the contrast by up to a factor of 2,
(3) brightness: changing the brightness by up to a factor of
3, (4) occlusion: covering up to a quarter of the image with
elliptical shapes of random bright colours to simulate distrac-
tors such as screen glare and reflection from glossy screens,
(5) Gaussian blur: with a radius of up to 5, (6) motion blur:
simulating the effects caused by movement during capture
(up to a length of 9 pixels), (7) defocus blur: simulating
an out-of-focus camera (up to a kernel size of 9), (8) noise:
Gaussian noise up to a level of 0.2, (9) colour perturbations:
randomising hue by a maximum of 5% and saturating colours
by a factor of up to 2, and (10) perspective: by up to 50%
over each axis to simulate varying camera angles.

By using random combinations of these augmentation meth-
ods, very high levels of accuracy can be achieved (see Section
[[V). In the following section, we will focus on the network
architectures used within our approach to classify ransomware
based on our training dataset and augmentation techniques.

C. Classification Model

Many state-of-the-art classification networks [2]-[9] are
capable of yielding very high-accuracy results, especially
when pre-trained on large datasets such as ImageNet (Table

). However, despite the recent push towards efficiency [4],
[7], [8]], the majority of such models make use of very deep
architectures and a large number of parameters (Table [[).

An important part of our work is to estimate model uncer-
tainty via Bayesian approximation. This can be accomplished
by applying dropout to every weight layer within the model,
which can be highly problematic for very deep networks
[2], [3]] as the large number of dropout layers would make
convergence intractable. While simply reducing the number of
dropout layers can help with the convergence problem [10],
it comes at a cost of uncertainty precision since it would not
be possible to accurately calibrate the uncertainty estimation
process if some layers contain neurons that cannot be dropped.

To remedy this issue, we propose our own custom architec-
ture, seen in Figure[2] This light-weight network takes an input
of size 128 x 128 and after six convolutional layers and three
max-pooling operations produces a feature vector of 4096
dimensions. This is subsequently passed into a fully-connected
layer which classifies the input into one of 50 classes. Training
is accomplished via a cross entropy loss function and no nor-
malization is performed. To approximate Bayesian inference,
dropout can be applied to every weight layer. Figure 2] shows
an outline of our custom network architecture, with the dropout
layers optionally used to approximate Bayesian inference.

We utilise the Bayesian dropout techniques [[10]—[[12]] to
calculate model uncertainty via Monte Carlo sampling. After
N stochastic forward passes of the same input X (images)
through the network to produce the output Y (class labels),
the predictive mean of the model is E(Y) = 4 ZnN:1 Y.
The predictive uncertainty is thus obtained as follows:

1 Y 1 T'rr T
Var(Y) = ;Yn Y, - E(Y)'E(Y).
The dropout rate can be set as a fixed hyper-parameter tuned
to the data via grid-searches (0.05 in our case for all dropout
layers) or learned as model parameters [11]], [12]. In Section
IV-C| we experiment with all these variations of Bayesian
approximation to enable further insight into the functionality
of our model and uncertainty measurements in general.

(1)

D. Implementation Details

The image data in our training and test sets are all of differ-
ent resolutions but cropped to a square with the length equal
to the smaller image dimension (random cropping for training
images and centre cropping for test images) and resized to an
image of dimensions 128 x 128 for our custom network or
256 x 256 for higher accuracy results. The non-linearity used
in our custom architecture is leaky ReLU (slope = 0.2). The
training data imbalance is handled by weighting the inputs
in the loss function according to the frequency of their class.
All models are trained to 100,000 steps. The implementation
is done in PyTorch [24], with Adam [25] providing the best
optimization (8; = 0.5, B2 = 0.999, o = 0.0002).

IV. EXPERIMENTAL RESULTS

We evaluate our work using extensive experimental analysis.
The results of various classification approaches are evaluated

Evaluation Metrics (higher, better) Evaluation Metrics (higher, better)

Augmentation Augmentation
Accuracy F; Score AUC Accuracy F; Score AUC
P/R/B/C/N/O/M/CP/D/G 0.716 0.703 0.855 P/R/B/C/N 0.616 0.609 0.782
P/R/B/C/N/O/M/CP/D 0.690 0.681 0.842 P/R/B/C 0.606 0.592 0.776
P/R/B/C/N/O/M/CP 0.674 0.658 0.821 P/R/B 0.592 0.580 0.771
P/R/B/C/N/O/M 0.648 0.632 0.805 P/R 0.586 0.569 0.762
P/R/B/C/N/O 0.634 0.628 0.797 P 0.524 0.500 0.757

TABLE IV: Evaluating the performance of the combined augmentation techniques. C: Contrast; R: Rotation; B: Brightness;
P: Perspective; M: Motion blur; D: Defocus blur; G: Gaussian blur; N: Noise; O: Occlusion; CP: Colour Perturbation.

07 0.200-
—— Positive Dataset
—— Negative Dataset

—— Positive Dataset
0.20- —— Negative Dataset

—— Positive Dataset

0.175- —— Negative Dataset 0.10

0.150-

8

>
£o12s

Uncertainty

z

=

e}
£ 0100 (10106
a @

g

=]

Accuracy

o
€ 0.075-
=)

2

0.050-

—— Fixed Dropout
o5 —— Concrete Dropout
—— Variational Dropout

0.025

000 =——/
25000 0 5000

0.000- 0.00
10000 15000 20000 25000 0 5000

Training lteration Training lteration Training lteration Training lteration

Test Accuracy Custom Network - FDO Custom Network - CDO Custom Network - VDO

Fig. 4: Left: Test accuracy of our model with fixed [10]], concrete [[11] and variational dropout [[12] trained for 25,000 iterations.
Right: Uncertainty values as our model is trained with fixed [10] (FDO), concrete [11] (CDO) and variational dropout [12]
(VDO) layers. All models demonstrate greater uncertainty on the negative test data (red) than on the positive test images (blue).

0 5000 10000 15000 20000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

and using ablation studies, we demonstrate the importance of
our data augmentation. Using our positive and negative test
data, we investigate the effectiveness of model uncertainty
values obtained through Bayesian approximation via dropout.

A. State-of-the-Art Classification

For the best possible accuracy, we use various classification
networks [2]-[9]]. With higher-resolution inputs (256 x 256),
accuracy levels of up to 93.6% can be achieved using our full
augmentation protocol and a DenseNet-201 network [5] pre-
trained on ImageNet. Table [I] contains results obtained from
different architectures across various metrics. As seen in Table
pre-training the network is very important and can lead to
performance boosts of up to 14% for some of the networks.

As indicated by the high F; score, despite the uneven class
distribution in the dataset, our class balancing efforts (Section
lead to evenly distributed results. The high AUC (Area
Under the Curve) demonstrates the capability of the approach
to distinguish between the classes with little confusion. The
confusion matrices for the models [5]—[7]], shown in Figure El,
confirm these findings and point to the strong feature learning
capabilities of the models. With a focus on efficiency, we
observe fast convergence can be intractable in deep models
when Bayesian dropout is used to obtain uncertainty. Since
our approach is meant to specifically accommodate lay users
through a website, a light-weight model is very important to
reduce the chance of high load and hence denial of service.

To address these issues and for experimental consistency,
we compare our custom network against state-of-the-art clas-
sification networks with smaller (128 x 128) inputs. As seen
in Table our model outperforms most networks [2]—[4]], [6[]—
[9] while remaining competitive with others [5]]. The superior

performance of our architecture is due to the fact that the
number of its layers and parameters are tuned to the dataset.

B. Ablation Studies

As one of our primary contributions is training a classifier
using a single image for each variant of splash screen by means
of our carefully-designed augmentation techniques (Section
I1I-B)), it is very important to demonstrate the importance
of these augmentation techniques. We thus train our custom
network (with no dropout) using individual augmentation tech-
niques to measure their effects on the results. Table [lII| contains
these results. As expected, not using any augmentation leads
to poor performance, while significantly better results can be
achieved when all the augmentation methods are combined.
We also experimented with random combinations of the tech-
niques to empirically investigate any incompatibility, but found
that all augmentation techniques contribute to the improvement
of the results, as seen in Table

As seen in Tables and perspective and rotation
have the greatest influence over the results. In our additional
experiments, we found that horizontally flipping the images
leads to worse performance since modern consumer cameras
do not produce mirrored images. We also found that vertically
flipping the images has no impact on the results as the effects
of this augmentation method can be replicated via rotation.

C. Model Uncertainty

Another important component of this work is obtaining
uncertainty, therefore enabling the identification of unrelated
inputs. Our custom network (Figure [2) is consequently trained
with the three different dropout modules [10]—[12]], which are
kept in place during inference and uncertainty is calculated as

Approach Test Data Uncertainty Confidence
Fixed D = Positive 0.015 0.85 & 0.21
1xed Dropout 10 Negative 0330 0.66 £ 0.25
c b T Positive 0.067 0.87 + 0.19
oncrete Dropout I Negative 0.218 0.72 + 0.29
Variational b = Positive 0.084 0.86 + 0.22
arational Dropout (12! Negative 0.175 0.71 + 0.23

TABLE V: Numerical results of different Bayesian approxi-
mation methods [[10]—[12] to obtain model uncertainty.

per Eqn. [1] Recent work [13]] argues that the use of variational
dropout [[12]] does not lead to proper Bayesian behaviour and
can result in overfitting. This notion is somewhat confirmed by
our experiments, as seen in Figure [Z_f] (left), wherein variational
dropout can lead to overfitting and lower accuracy results.

Moreover, by measuring uncertainty in the presence of our
positive and negative test data, we can assess the effectiveness
of our uncertainty values. As seen in Figure [] (right), our
model is very uncertain for negative test images, while the un-
certainty values are smaller for positive test data. Interestingly,
a fixed dropout rate (FDO) [10] produces cleaner and more
accurate uncertainty values despite the intensive computation
required to determine the dropout rate (0.05 in our case).

For our best-performing model (fixed dropout), an uncer-
tainty value of 0.12 seems to be a threshold, beyond which
the model predictions are not reliable. Table [V| provides
an analysis into the results of our Bayesian approximation
methods [10]—[12]]. As expected, the mean uncertainty values
are significantly higher for the negative test images than for the
positive images, and the confidence values have such a high
standard deviation that makes them useless for determining
how much the model knows about the input image.

V. CONCLUSION

We explore the possibility of classifying ransomware vari-
ants based on an image of the splash screen captured using
a consumer camera. We create a dataset with only a single
image available for each variant of splash screen. Instead of
creating a large training corpus of screenshot images, we opt
for simulating the conditions that lead to the appearance of a
screenshot image through carefully-designed data augmenta-
tion techniques, resulting in a simple one-shot learning pro-
cedure. We also employ Bayesian approximation approaches
[10]-[12] to obtain model uncertainty. By using these special
input cases such as unrelated non-ransomware images and
new or unknown ransomware variants can be identified. Using
extensive experimental evaluation, we have demonstrated that
accuracy levels of up to 93.6% can be achieved using our full
augmentation protocol and DenseNet [5]]. Assessments using
our negative test dataset (images unknown to the model) also
indicate that our custom architecture trained with [10]-[[12] is
capable of accurately estimating uncertainty values.

ACKNOWLEDGEMENT

This work was in part supported by the EPSRC EMPHASIS
(EP/P01187X/1) and CRITiCaL (EP/M020576/1) projects.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

REFERENCES

A. Ferrante, M. Malek, F. Martinelli, F. Mercaldo, and J. Milosevic,
“Extinguishing ransomware - A hybrid approach to Android ransomware
detection,” in Int. Symp. Foundations and Practice of Security. Springer,
2017, pp. 242-258.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Computer Vision and Pattern Recognition,
2016, pp. 770-778.

F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5
MB model size,” arXiv preprint arXiv:1602.07360, 2016.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE Conf. Computer Vision and
Pattern Recognition, 2017, pp. 4700-4708.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception architecture for computer vision,” in IEEE Conf. Computer
Vision and Pattern Recognition, 2016, pp. 2818-2826.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet v2: Practical
guidelines for efficient CNN architecture design,” in Euro. Conf. Com-
puter Vision, 2018, pp. 116-131.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetv2: Inverted residuals and linear bottlenecks,” in IEEE Conf.
Computer Vision and Pattern Recognition, 2018, pp. 4510-4520.

S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in IEEE Conf. Computer
Vision and Pattern Recognition, 2017, pp. 1492-1500.

Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Int. Conf. Machine
Learning, 2016, pp. 1050-1059.

Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Advances in
Neural Information Processing Systems, 2017, pp. 3581-3590.

D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and
the local reparameterization trick,” in Advances in Neural Information
Processing Systems, 2015, pp. 2575-2583.

J. Hron, A. Matthews, and Z. Ghahramani, “Variational Bayesian
dropout: Pitfalls and fixes,” arXiv preprint arXiv:1807.01969, 2018.

G. Jacob, R. Hund, C. Kruegel, and T. Holz, “JACKSTRAWS: Picking
command and control connections from Bot traffic,” in USENIX Security
Symposium, 2011.

N. Andronio, “Heldroid: Fast and efficient linguistic-based ransomware
detection,” Ph.D. dissertation, 2015.

N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and drop
it): Stopping ransomware attacks on user data,” in Int. Conf. Distributed
Computing Systems. 1EEE, 2016, pp. 303-312.

R. Vinayakumar, K. Soman, K. S. Velan, and S. Ganorkar, “Evaluating
shallow and deep networks for ransomware detection and classification,”
in Int. Conf. Advances in Computing, Communications and Informatics.
IEEE, 2017, pp. 259-265.

L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 4, pp. 594-611, 2006.

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in Int. Conf. Machine Learning Workshop,
vol. 2, 2015.

A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca,
“Data augmentation using learned transformations for one-shot medical
image segmentation,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2019, pp. 8543-8553.

A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian
deep learning for computer vision?” in Advances in Neural Information
Processing Systems, 2017, pp. 5574-5584.

N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,”
J. Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
A. Damianou and N. Lawrence, “Deep Gaussian processes,” in Artificial
Intelligence and Statistics, 2013, pp. 207-215.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,”
in Advances in Neural Information Processing Systems, 2017, pp. 1-4.
D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learning Representations, 2014, pp. 1-15.

