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A B S T R A C T

Despite significant research focus on 3D scene capture systems, numerous unresolved
challenges remain in relation to achieving full coverage scene depth estimation which
is the key part of any modern 3D sensing system. This has created an area of research
where the goal is to complete the missing 3D information post capture via a secondary
depth filling process. In many downstream applications, an incomplete depth scene
is of limited value, requiring many special cases for subsequent utilization, and thus
techniques are required to “fill the holes” that exist in terms of both missing depth and
color scene information. An analogous problem exists within the scope of scene filling
post object removal in the same context. Although considerable research has resulted
in notable progress in the synthetic expansion or reconstruction of missing color scene
information in both statistical (texture synthesis) and structural (image completion)
forms, work on the plausible completion of missing scene depth is contrastingly
limited. This survey aims to provide a state of the art overview within this growing
field of depth synthesis work whilst noting related solutions in the space of traditional
texture synthesis and color image completion for hole filling. To these ends, we
concentrate on the plausible completion of both underlying depth structure and relief
texture to provide both greater understanding and future development in the area. Our
analyses are in part supported by illustrative experimental examples of the comparative
use of a subset of representative approaches over common depth completion examples.

1. Introduction

Three dimensional scene sensing is gaining an ever-

increasing applicability and importance due to its wide-spread

uses in real-world scenarios, including areas such as interactive

entertainment, future vehicle autonomy, environment modeling,

security surveillance, and future manufacturing in technologies.

Despite extensive work on 3D sensing of late [1, 2, 3, 4, 5], a

number of limitations pertaining to environmental conditions,

inter-object occlusion, and sensor capabilities constrain fully-
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effective scene depth capture [1, 6]. As a result, significant re-

search has been focused specifically on developing techniques

to complete missing scene depth to increase the quality of the

depth information for better applicability. Although many have

attempted to use traditional texture synthesis and structural im-

age completion techniques, (in whole or in part) to address the

problem of scene depth completion, challenges remain in terms

of efficiency, depth continuity, surface relief, and local feature

preservation that have hindered flawless operation against high

expectations of plausibility [7, 8, 9, 10, 11, 12]. This work aims

to present a review of prior work in the domain focusing on

current state of the art capabilities, shortcomings, and future
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Fig. 1: Example of depth acquired via stereo correspondence in an urban driving scenario. Note the missing depth values despite accurate camera calibration.

challenges. Although the main focus of this study is on scene

depth completion and hole filling, a summary of the most influ-

ential approaches within color image completion and synthesis

are additionally presented to support this agenda.

In this vein, in Section 2, we present a short overview of

the commonly-used approaches for capturing depth in an in-

expensive widely accessible manner. Section 3 will provide a

short description of a number of most relevant state-of-the-art

color image completion techniques and Section 4 a taxonomy

of recent advances in scene depth completion covering aspects

of problem formulation, spatial consistency, temporal continu-

ity and others. As appropriate, these sections are supported by

comparative experimental results over common data examples

(Figures 19 and 26; Table 2). Finally, we conclude with a sum-

mary of current themes, remaining limitations, and potential av-

enues for future investigation.

2. Depth Acquisition

While high-end depth sensing technologies, including light

field cameras and LIDAR, exist that are capable of capturing

accurate scene depth with relatively fewer anomalies (missing

or invalid depth, undesirable artefacts, and depth inhomogene-

ity) compared to consumer devices, they remain expensive and

difficult to operate in terms of size, weight, and power. As a re-

sult, both industry and academia have gravitated toward more

easily accessible technologies such as stereo correspondence

[13, 14, 15], structured light [16, 17, 18, 2], and time-of-flight

cameras [19, 20, 21].

Stereo imaging as a passive scene acquisition method has

long been used as a reliable source of depth sensing, but not

without certain issues. Although stereo correspondence is

better equipped than structured light and time-of-flight cam-

eras to estimate depth where highly granular texture is present

compared, smoothing still occurs. Additionally slightest mis-

calibration or issues in the setup and synchronization can lead to

invalid or missing depth information. Moreover, missing depth

(holes) are often observed in the scene depth where absence of

camera overlap, featureless surfaces, sparse information for a

scene object such as shrubbery, unclear object boundaries, very

distant objects, and alike are present. Such issues can be seen

in Figure 1, where “RGB” denotes the left color image, “D” the

estimated depth, and “H” is a binary mask marking where depth

holes are (in black).

Structured light devices and time-of-flight cameras are active

range sensors, and while they can suffer from mis-calibration

issues, they are more-widely utilized for a variety of purposes

due to their low-cost availability in the commercial market with

factory calibration settings [22, 23, 24, 25].

Despite this, structured light sensors are subject to a wide

range of issues including but not limited to over-saturation due

to ambient light [22], external active illumination source inter-

ference [23, 24], active light path error caused by reflective sur-

faces, occlusion, fronto-parallel angle of the object to the sensor

[25, 26], erroneous light pattern detection in dynamic scenes

[25], and others.

Similarly, time-of-flight cameras have their own flaws that

lead to invalid or missing depth, noise, and other additional

artefacts, such as depth error caused by light scattering or semi-

transparent surfaces [27, 28], external illumination interference

[29], depth offset for non-reflective objects [30], and alike [25].

It must be noted that not all of such issues will lead to miss-

ing depth information (holes), but invalid depth and noise are

essentially detriments in practice and are best handled through

removal and subsequent filling. Figure 2 depicts examples of

depth images obtained using a structured light camera (left;

“RGB1” denotes the color image, “D1” the depth, and “H1” a

binary mask depicting the location of depth holes in black) and

a time-of-flight camera (right; “RGB2” denotes the color image,
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Fig. 2: Examples of depth acquired via a structured light device (left) and a time-of-flight camera (right). Depth is missing in images captured using both devices.

“D2” the depth, and “H2” a binary mask depicting the location

of depth holes in black).

While many 3D computer vision applications continue to

move forward as they cope with the issues caused by depth

holes, performance can be improved in many respects if accu-

rate hole-free depth information is readily available for process-

ing, hence the creation of the entire literature on depth com-

pletion. In this study, we aim to encapsulate the essence of

the research conducted on this subject matter to provide a bet-

ter understanding of the approaches so future researchers may

benefit by choosing the right technique for their purposes. Fur-

thermore, we aim to bring together a sample of illustrative ex-

perimental results to both support current performance trends

and identified future research directions.

Since depth information is represented and processed in the

form of images, and many researchers still apply more clas-

sical color image completion methods to depth maps, a brief

overview of image completion within the context of scene color

maps (RGB) can be beneficial for a better understanding of the

many-facet subject of depth filling.

3. Image Completion

A long-standing and analogous challenge to depth filling

problem has been to complete a color image after a selected

object or region is removed or alternatively to create a plausi-

ble synthesis of the image over a larger spatial area. As there

already exists an extensive literature on the subject, in this sec-

tion, we only focus on methods that have been or can potentially

be used for depth filling.

Early color image inpainting techniques (focusing on the ge-

ometry of the shapes), attempted to smoothly propagate the

isophotes (lines where the intensity value is the same) into the

target area that is to be inpainted. However, most structure-

Fig. 3: Results of [38] compared to [39]. The foreground microphone has been
removed and inpainted, but compared to [38], the texture in the result of [39] is
not accurate, leading to a perception of blurring (reproduced from [38]).

based inpainting approaches overlook one of the most impor-

tant image components which plays a significant role in what

the observer senses as reality: high fidelity (spatial frequency)

texture. As a result, many subsequent inpainting techniques be-

gan to incorporate ideas from the field of texture synthesis (in

which the objective is to generate a large texture region given a

smaller sample of texture without visible artefacts of repetition

within the larger region [31, 32, 33, 34, 35]) into their inpaint-

ing techniques [36, 37, 38], which resulted in more plausible

better quality outputs (exemplar-based image completion).

With their focus on structure rather than texture, Bertalmio et

al. [39] attempt to solve the problem of inpainting in a pioneer-

ing work using higher order partial differential equations and

anisotropic diffusion to propagate pixel values along isophote

directions (Figure 3). After consulting various experts on scene

composition in the artistic sense, they created a general set of

inpainting principles that have henceforth become widely-used

standard guidelines for how inpainting algorithms should func-

tion, which remain highly relevant even in depth completion

cases:

• Rule 1: after the inpainting process is completed, the in-

painted target region must be consistent with the known

region of the image to preserve global continuity.

• Rule 2: the structures present within the known region

must be propagated and linked into the target regions.

• Rule 3: the structures formed within the target region must

be filled with color consistent with the known regions.



4 Preprint Submitted for review / Computers & Graphics (2018)

Fig. 4: The process within the framework of [36] (reproduced from [36]).

• Rule 4: texture must be added into the target region after

or while the structures are filled.

In [39], these rules are used in an iterative approach to fill the

target region and mimic the principles of generalized 3D object

completion as identified in [40] with reference to the psycholog-

ical literature on human visual perception. To achieve visually

convincing and plausible results, these rules should also be fol-

lowed within the context of depth completion, except for rule 3,

since no color information is contained within a depth image.

While [39] works well for small areas or smooth and untex-

tured background regions, inpainting was by no means a solved

problem, and in the presence of fine texture, the approach fails

to generate satisfactory results as it mainly focuses on structure,

failing to preserve texture (Figure 3).

Later on, improved inpainting approaches began to emerge

based on a range of techniques including fast marching method

[41], Total Variational (TV) models [42, 43, 44], and exemplar-

based methods that focus on “synthesizing” fine texture in the

target region along with propagating structure [38, 36, 45, 46].

The notable work in [36], which is regularly used within

color and depth filling ([47, 48]) followed traditional exemplar-

based texture synthesis methods [32] by prioritizing the order

of filling based on the strength of the gradient along the target

region boundary. Although there have previously been attempts

to complete images via exemplar-based synthesis [45, 46], they

are all lacking in either structure propagation or defining an ex-

plicit filling order that could prevent the introduction of blur-

ring or distortion in shapes and structures (see Figure 4). The

method in [36] demonstrates that exemplar-based methods are

not only well-suited for two-dimensional texture but also ca-

pable of propagating isophotes and linear structures. An ex-

ample of the results of this method is seen in Figure 4, where

we see that plausible water texture has been synthesized in the

Fig. 5: An example of [36] applied to depth and color images. The goal is to
remove an object (the baby) from both color and depth and fill the extisting
holes in the depth image (represented by the black marks) at the same time.

target region after the person is removed from the original im-

age. However, even though the algorithm is able to deal with

texture and linear structure, it cannot handle curved structures

and is highly dependent on the existence of similar pixel neigh-

borhoods in the sample region for plausible completion. Ad-

ditionally, the approach highly relies on the existence of fine

reflectance texture to prioritize patches and can fail when deal-

ing with large objects in more smooth depth images (Figure 5).

These issues will be discussed further is Section 4.

While exemplar-based inpainting (sampling and copying

patches from the known regions of the image) have been proven

successful in many respects, there are limitations regarding

the amount of samples available, but more importantly, perfor-

mance is significantly degraded when dealing with scenes that

are not of a fronto-parallel view, which can create issues such

as perspective handling within the completion process. Some

methods have been proposed to combat this issue [49, 50] by in-

cluding the transformed version of patches in the sample search

space. The transformation can include rotation, scale, gain, and

bias color adjustments. Although this can solve the problem

of perspective and view angle and improve the performance of

the completion process, it exponentially increases the size of

the search space from 2 degrees of freedom per output pixel or

patch to 8 (i.e. equivalent to a homography transformation) or

more (photometric variations, e.g. bias/gain of intensity chan-

nels). Not only is the efficiency and speed of the process thus

affected, but also an elevated probability of taking a local opti-

mum as the result can be expected.

To combat these limitations, many other image completion

techniques [51, 52, 53, 54, 55, 56, 57, 37, 58, 59] have been

proposed that are capable of filling large portions of an image

successfully. For instance, certain methods use schemes such as
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Fig. 6: Results of [61], achieved by adding the mid-level scene understanding
constraints of translational regularity (via scale-invariant feature (SIFT) match-
ing [72]) and planar perspective to guide the process (reproduced from [61]).

the reformulation of the exemplar-based inpainting problem as

a metric labeling problem [51] subsequently solved using sim-

ulated annealing, energy minimization methods [52, 53, 54],

Markov Random Field models with labels assigned to patches

[55] using belief propagation via priority scheduling, models

represented as an optimal graph labeling problem, where the

shift-map (the relative shift of every pixel in the output from

its source in the input) represents the selected label and solved

by graph cuts [56], and the use of Laplacian pyramids [60] in-

stead of the gradient operator in a patch correspondence search

framework due to the advantageous qualities of Laplacian pyra-

mids, such as isotropy, rotation invariance, and lighter computa-

tion. Image completion has also been accomplished using mid-

level scene understanding constraints [61] (Figure 6), semanti-

cally similar external databases of images [62, 63] (Figure 7),

and deep convolutional neural networks aided by adversarial

training [64, 65, 66] to plausibly complete color images.

The aforementioned methods certainly do not represent the

entirety of the image completion literature and are not the focus

of this study. As such, since wide-expanding surveys already

exists on the issues of texture synthesis and inpainting within

the context of color images [67, 68, 69, 70, 71], we will not

delve any further into the subject and only refer to techniques

directly pertinent to the issue at hand, depth completion.

4. Depth Hole Filling

Compared to the significant prior work in color image com-

pletion [32, 39, 36, 37, 42, 41, 68, 69, 70, 71], more limited

literature exists on the removal of objects from scene depth

[73, 74, 75] and filling the naturally occurring holes in depth

images [7, 8, 9, 10, 11, 12] mainly because this is a relatively

Fig. 7: Results of [62], achieved by extracting semantically similar images from
a large database of photographs, and filling the target region by copying a region
from a semantically valid image (reproduced from [62]).

new area of research with significant challenges [40]. Inpaint-

ing methods provide excellent results when it comes to filling

color images, but depth images have different attributes that can

affect the results when a color image inpainting method is ap-

plied to them, and as such, other new or modified techniques

are required for better results.

Here, we will first focus on the different formulations of the

depth inpainting problem, as numerous research works have

attempted to solve this problem by concentrating on differ-

ent challenges within the framework of depth filling. In later

sections, we will attempt to provide a taxonomy of the cur-

rent depth filling literature based on the information domain

required for processing, input necessities, and the different as-

pects of the resulting output the completion process within in-

dividual techniques often focuses on.

4.1. Problem Formulation

Creatively reformulating an ill-posed problem such as scene

depth completion and inpainting will lead to solutions that can

fulfill particular required elements pertaining to certain situa-

tions, including time, computation, accuracy, and alike. In this

section, we will discuss some of the most common ways in

which depth filling has been posed and solved as a problem,

and the effects each reformulation can have on the results.

4.1.1. Anisotropic Diffusion

Formulating the image completion and de-noising problem

as anisotropic diffusion [76] has been a long-standing and

successful technique in the field of color image inpainting

[43, 39, 77, 59]. As such, diffusion-based solutions have also

entered the realm of depth filling, since the smoothing and edge-

preserving qualities of the diffusion-based depth filling output

is desirable in certain downstream applications such as local-

ization and mapping [78, 79].
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Fig. 8: The results of the method in [80]. The approach is an anisotropic
diffusion-based method with real-time capabilities (reproduced from [80]).

Anisotropic diffusion is a non-linear partial differential equa-

tion scheme [76] with edge-preserving smoothing qualities. As

a space-variant transformation of an input image, it generates

a family of smoothed parametrized images, each of which cor-

responds with a filter that depends on the local statistics of the

input image.

More formally put, let I(·, t) be a family of parametrized im-

ages, then the anisotropic diffusion is:

It = div(c(x, y, t)∇I) = c(x, y, t)∆I = ∇c · ∇I, (1)

where div is the divergence operator, ∇ and ∆ denote the gra-

dient and Laplacian operators respectively, and c(x, y, t) is the

diffusion coefficient, which can be a constant or a function of

the image gradient.

Equation 1 can be discretized using a 4-neighborhood

scheme, as in [80] where the color image is used to guide the

diffusion in an iterative process. In this approach [80], the depth

image is completed at a low resolution, and the ensuing iterative

color-guided anisotropic diffusion within the upsampling steps

corrects the depth image (see an example of the results of the

approach [80] in Figure 8).

Another example of the use of diffusion in depth completion

can be seen in [81]. The approach attempts to fill depth holes by

extracting the edges from the accompanying color image cap-

tured from a structured-light device. Subsequently, different

diffusion algorithms are applied to smooth and edge regions.

The separation of these regions before the diffusion process is

performed based on their observation that surfaces which need

to be smooth in the depth may be textured in the color image,

and object boundaries within the depth image can be missed

during the color edge extraction process due to the low contrast

in the color image.

Using diffusion methods, the resulting completed depth im-

age can be smooth in the presence of flat planes with sharp

edges. While smooth surfaces and strong edges and object

boundaries can be very desirable traits in a depth image, the

implementation requires discretization and will bring forth nu-

merical stability issues and is computationally expensive. The

longer run-time of diffusion-based methods make them in-

tractable for real-time requirements within applications.

4.1.2. Energy Minimization

Following the successes of energy minimization used within

the color image completion framework [52, 53, 54], the tech-

nique has been used in various depth filling approaches.

The foundations of an energy minimization approach stem

from certain assumptions made about the color and/or depth

image, based on which an energy function is designed. The

function is subsequently optimized, completing and enhancing

the original image based on the criteria set within the different

terms added to said energy function.

Depth filling approaches using energy minimization are

mostly accurate and produce plausible results, but more impor-

tantly the capability of these approaches to focus on specific

features within the image based on the terms added to the en-

ergy function is highly advantageous.

For instance, the energy function in [82] incorporates the

characteristics of a depth image acquired via a structured light

device (Kinect) into the filling process. The noise model of the

capture device and structure information are taken into account

using terms added to the energy function, performing the regu-

larization during the minimization process.

The approach in [83] assumes a linear correlation between

depth and color values within small local neighborhoods. An

additional regularization term based on [84] enforces sparsity in

vertical and horizontal gradients of the depth image, resulting

in more crisp object boundaries with less noise (Figure 23). The

work of [85] includes a data term that favors pixels surrounding

hole boundaries and a smoothing prior that encourage flat and

smooth surfaces within the depth image. This is very advanta-

geous in terms of geometry and structure of the scene following
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Fig. 9: Examples representing challenges involving depth textures (captured using Microsoft Kinect v2). When captured from close proximity, depth values of
highly textured objects are missing due to the short camera distance (left). The same objects captured from a distance are smooth with little granular relief (right).

the design of the energy function, even though important infor-

mation such as relief and texture is lost in the output.

Designing an energy function based on the characteristics of

the input and the requirements of the output can be very ben-

eficial, as the function can be modified or regularized to pro-

duce desirable outputs based on the specific application of the

resulting depth image. However, the optimization process can

come with implementation difficulties, numerical instabilities,

and computationally intensive necessities.

4.1.3. Exemplar-based Filling

One of the most important challenges involving the depth

filling problem is related to texture, which not unlike the re-

lated work in color image completion can be solved by copying

and pasting textured patches from the known regions of the im-

age (exemplar-based image completion). However, there can be

major pitfalls with using an exemplar-based technique used for

color image completion for a depth image.

While texture and relief are very important in many modern

computer vision tasks, most active depth sensing devices do not

cope well with texture, which is why missing and invalid depth

values in close views of highly textured regions is common-

place. In Figure 9 (A), we can see that an attempt to capture the

depth of a highly textured object from a close distance fails, due

to the fact that most active depth sensors (in this case a time-of-

flight camera) cannot deal with objects too close to the camera.

On the other hand, if more distance is allowed between the cam-

era and the textured object to resolve this issue, the resulting

depth image is more smooth and shape-based than the equiva-

lent color image (Figure 9 - B). We can see in Figure 9(A) that

the color (RGB) image contains highly textured objects close

to the capture device, while all the depth values in these ob-

jects are missing in the depth (D) image, because of the close

proximity of the camera to the objects in the scene. Figure 9(B)

indicates that the same objects captured from a distance, while

still visibly textured in the color image (representing the hu-

man perception of relief), are far smoother in the depth image.

Passively obtained depth is normally better textured than depth

information acquired through active devices, but the amount of

captured texture and fine relief is still not comparable to the

relief perceived from the scene by a human observer (Figure 1).

Furthermore, simply assuming that a depth image is just a

gray-scale image with no texture [86] is a significant oversight

and ignores the many potentials an accurate and textured depth

image can have.

Even though there have been many attempts to directly use

structure-based or exemplar-based color image completion ap-

proaches for depth hole filling [47, 48, 41], particular factors

create obstacles. As mentioned earlier, a depth image is not as

visibly textured as a color image of the same scene. Therefore,

when a structural inpainting technique is being used to propa-

gate the shapes and structures into the target regions, identifying

the points at which the propagation must be terminated is chal-

lenging. There is little texture present, and in many cases object

boundaries lie within or adjacent to the holes, which makes de-

tecting them extremely challenging.

Formulating depth filling as an exemplar-based completion

problem based on specific depth image characteristics can rec-

tify many of these issues but is not without its own challenges.

Lack of color texture on a smooth surface which leads to uni-

fied depth can confuse an exemplar-based approach to a great

degree. As seen in Figure 5, the notable exemplar-based in-
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Fig. 10: A simple virtual image used to describe the issues of inpainting meth-
ods applied to depth images.

painting method of [36] is capable of filling the target region

post object removal from the color image in a reasonably plau-

sible way due to existence of color texture in the background

(Figure 5 - left), but within the context of depth, when color

texture is removed and uniform depth of a flat plane is all that

is left, results are not nearly as impressive (Figure 5 - right).

Please note that the goal is to remove an object (the baby) from

both the color and depth images and plausibly complete the re-

maining hole post removal and at the same time fill the existing

holes in the depth image (represented by black markings on the

depth map).

Moreover, attempting to replicate texture usually requires

copying pixels or entire patches from the known regions of the

image and using them to fill the holes. One drawback stems

from the fact that there may not be enough useful information

in the known region to sample from, which is a very common

problem in filling depth images if they are not of a fronto-

parallel view, which does occur with color image completion

as well. However, as mentioned before, the problem can be

solved for color images by including the transformed version of

the patches by varying rotation, scale, shear, aspect ratio, key-

stone corrections, gain and bias color adjustments, and other

photometric transformations in the search space when trying to

find similar patches to sample from. This will exponentially

increases the size of the search space and effect the efficiency

and accuracy, but is still a solution to the problem, nonetheless.

However, with depth images, there may be scenes in which no

suitable patch can be found to fill a specific part of the hole even

if the search space contains all possible transformed patches

from the input.

Imagine Figure 10 (left) contains the outline of a color im-

age. As we go deeper into the image, the intensity values in the

color channels of the image may change. However, the hue re-

mains the same, while the illumination changes. Therefore, by

transforming patches sampled from the known region (outside

the black rectangle in Figure 10-right) using homographic and

photometric transformations like illumination, suitable samples

can be found that can fill the target region.

On the other hand, assume Figure 10 represents an ideally

accurate depth image where the depth continuously varies from

pixel to pixel as we move deeper into the image (i.e. in a row of

pixels on the fence, no two pixels have the same depth value).

In a scenario like this, neither homography transformation nor

any commonly used photometric variation can guarantee that

patches exist in the resulting search space that can be used to

accurately fill the target region. Essentially, the 3D depth vari-

ation of the scene is captured within the 2D topology of the

depth image, but exemplar-based completion following a 2D

paradigm will inherently fail in such an ideal depth image. In-

stead, a full 3D transformation of a given patch may be required

in terms of rotation, translation, and scale.

It should be noted that the depth images captured using cur-

rent 3D sensing technology are not ideal, and in reality patches

that fit the criteria required to fill the target are often found in

the depth images obtained through the currently existing tech-

nology, but this does not guarantee that an exemplar-based im-

age completion solution will always fill depth images success-

fully as it does within color images. That said, there are spe-

cific depth filling techniques that still take advantage of classic

inpainting approaches such as [36] and [41], which have been

commonly employed, with or without additional improvements,

for depth value filling [87, 86, 58, 41, 8].

For instance, Atapour-Abarghouei et al. [75] performs the

challenging task of object removal and depth hole filling in

RGB-D images by decomposing the image into high/low spa-

tial frequency components by filtering in Fourier space. The

high frequency information (object boundaries and texture re-

lief) is filled using a classic texture synthesis method [32] re-

formulated as a pixel-by-pixel exemplar-based filling approach
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Fig. 11: Object removed from RGB-D image with holes filled using [75]. High and low spatial frequency components are filled independently resulting in sharper
and more crisp outputs.

and enhanced by means of query expansion within the search

space, and the low frequency component (underlying shape ge-

ometry) is completed via [37]. The results are then recombined

in the frequency domain to generate the final output. As seen

in Figure 11, the produced images are sharp, crisp, and without

additional artefacts, although the reliance of the approach on

[32] limits its overall computational efficiency.

On the other hand, the work in [88] attempts to perform ob-

ject removal in multi-view images with an extracted depth im-

age, and uses both structure propagation and structure-guided

completion to fill the images, which results in better geometric

and structural coherence. The target region is completed in one

of a set of multi-view photographs casually taken in a scene.

The obtained images are first used to estimate depth via Struc-

ture from Motion (SfM). Structure propagation and structure-

guided completion are employed to create the final results after

an initial color and depth filling step. The individual steps of

this algorithm use previously developed color image comple-

tion method of [53], and the patch based exemplar approach of

[50] to generate results. The approach is relatively costly due to

the fact that each of the three steps require an independent form

of image completion.

Linag et al. [73] proposes a color and depth inpainting

method using a segmentation based approach in stereo images.

They make use of the fact that parts of the removed region in

one stereo image may still be visible in the other, and try to

complete both images via 3D warping. They later fill in both

color and depth via depth-assisted texture synthesis, a modified

version of the well-known exemplar-based filling technique in

[36]. However, in cases where stereo or multi-camera views

are not available, as in many active 3D sensing devices such as

time-of-flight (ToF) cameras, but missing depth data is abun-

dant (e.g. Figure 9), other filling approaches not dependent on

stereo or multi-view images have to be used to fill the naturally

occurring holes in depth images. Furthermore, this method has

no built-in mechanism to handle large structures, and geometric

structures are not accounted for.

Another occasion where exemplar-based depth filling is often

used is in Depth Image-Based Rendering techniques (DIBR).

This is an extension to Image-Based Rendering (IBR) that tries

to create a novel “virtual” view from a set of “real” views, with

the added benefit of having depth information available. The

images are normally warped and combined to create new syn-

thetic views [92], but the greatest part of the challenge is to deal

with the newly exposed holes that are created after the warping.

There have been attempts to solve the depth image issues us-

ing exemplar-based image completion techniques such as the

one proposed in [36]. Daribo and Saito [47] directly utilize this

method in their approach to DIBR. Hervieu et al. [48] has mod-

ified said method to complete stereo-vision generated disparity

maps, where the information from the complementary disparity

is used to fill the missing information.

Solving the depth filling problem using an exemplar-based

framework has the potential to produce outputs in which struc-

tural continuity within the scene is preserved and granular re-

lief texture is accurately and consistently replicated in the miss-

ing depth regions. However, if the scene depth is not captured

from a fronto-parallel view, there is no guarantee that correct

depth values can be predicted for the missing regions even if

the patches sampled within the exemplar-based filling approach

undergo different transformations.
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Fig. 12: Example of the results of [89] using low-rank matrix operations (denoted by LMC) compared to joint bilateral filtering method (JBF) [90], structure guided
fusion (SGF) [91], spatio-temporal hole filling (SHF) [12], and the guided inpainting and filtering approach (GIF) [8] (reproduced from [89]).

4.1.4. Matrix Completion

Even though completing images using matrices is not con-

ventionally done, it has been observed [89] that similar patches

in an RGB-D image lie in a low-dimensional subspace and can

be approximated by a matrix with a low rank.

Lu et al. [89] presents a linear algebraic method for low-rank

matrix completion-based depth image enhancement to simul-

taneously remove noise and complete the depth image using

the accompanying color image that might be noisy. In order

to accomplish simultaneous denoising and hole filling, the low-

rank subspace constraint is enforced on a matrix with RGB-D

patches via incomplete factorization, which results in captur-

ing the potentially scene-dependent image structures both in the

depth and color space.

The rank differs from patch to patch depending on the image

structures, so a method is proposed to automatically estimate

a rank number based on the data. Figure 12 illustrates how

this method can outperform some of the other methods previ-

ously referred to in the literature as state-of-the-art approaches,

such as the joint bilateral filtering method (JBF) [90], structure

guided fusion (SGF) [91], spatio-temporal hole filling (SHF)

[12], and the guided inpainting and filtering approach (GIF)

[8]. These methods will be explained in the upcoming parts.

It is worth mentioning that the approach [89] generates particu-

larly impressive results in that the color image used as the input

is noisy (Figure 12 - Color Image). Before the comparisons, a

state-of-the-art denoising method [93] was applied to the noisy

color image used as an input for the comparators.

Discussion: The problem of depth image completion, being

an inherently ill-posed one, can of course be formulated in a

variety of ways, including but not limited to diffusion, energy

minimization, exemplar-based completion, and alike. Reformu-

lating the depth filling problem results in a variety of solutions

that generate completed depth maps with different qualities ap-

propriate for the application for which the depth information is

intended. Additionally, there is great potential in attempting to

complete an image using a learning-based approach that is ca-

pable of understanding the scene intricacies, objects, and their

spatial relationships. In recent years, deep neural network ap-

proaches have made advances in predicting depth from a single

monocular color image [94, 95, 96, 97, 98, 99] and depth super-

resolution and upscaling [100, 101, 102], many of which actu-

ally learn spatial and/or temporal information within the scene

to accomplish their tasks. However, to the best of our knowl-

edge, no attempts have been made so far to complete depth im-

ages using deep neural networks, but any approach capable of

learning about scene context and content can potentially pro-

duce promising results compared to the conventional methods

we focus on here.

Our goal is to facilitate the comprehension of the many ap-

proaches functioning in or around the field of depth filling

[73, 88, 89, 90, 91, 8, 83, 103]. Although highly varied and

multifarious, we have made significant strides to divide depth

image completion strategies into specific groups for a better and
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deeper understanding of their functionalities, which would lead

to an easier choice of the right approach for researchers based

on their requirements and desired effects.

In the upcoming sections, we will categorize depth filling

strategies based on three different characterizations: their de-

pendence on the accompanying color image (which may not

always be available), the main objective focus that an approach

attempts to fulfill (associated with the principles of inpainting

outlined by [39] explained in Section 3), and the type of infor-

mation used within the scene to complete missing depth.

4.2. Information Domain Used for Depth Filling

There are three general types of approaches commonly used

to deal with holes in depth images obtained using active or pas-

sive 3D capture methods based on the domain of information

used to carry out the filling process. An approach may only use

the spatial information locally contained within the depth map

and potentially the accompanying color image, temporal infor-

mation extracted from a sequence used to complete or homog-

enize the scene depth, or even a combination of both in various

ways. A brief overview of the approaches utilizing these types

of input information is presented in this section. Furthermore,

Table 1 provides a short summery of the advantages and the

disadvantages of all the categories. Please note that the listed

advantages and disadvantages for a given class of approaches

in the table obviously vary in degree and strength for different

methods in that category, and are generalized to be more com-

prehensive. Figure 13 provides a general overview of depth fill-

ing techniques categorized based on their input dependencies

and required information domain.

4.2.1. Spatial-Based Depth Hole Filling

The methods in the first group of depth hole-filling ap-

proaches use the neighboring pixel values and other informa-

tion available in a single depth image to complete any missing

or invalid data in the depth image. There are also several ap-

proaches that take advantage of the information available in the

color image of the same scene to fill the missing data in the

depth image.

Even though there are clear limitations to using this type of

approach, such as a possible lack of specific information that

can be construed as useful to a particular hole region in the cur-

rent image, there are many important advantages. For instance,

when temporal and motion information is taken into consider-

ation in depth completion, filling one frame in a video requires

processing multiple consecutive frames around it, and so either

the processing has to be done off-line or if real-time results are

needed, the results of each frame will appear with a delay. How-

ever, if there is no dependence on other frames, with an efficient

spatial-based method, real-time results can be generated with-

out any delay.

Being the most-widely-studied depth hole filling approach

in the literature, several spatial-based methods have been

proposed to complete depth images, the majority of which

can be categorized in three different classes: methods that

rely upon filtering, interpolation, and extrapolation techniques,

inpainting-based methods, and finally, reconstruction-based

methods. Examples of the seminal works in these areas are

presented in Table 1.

4.2.1.1. Filtering, Interpolation, and Extrapolation

The easiest, yet not always the best, solution to the depth hole

filling problem is applying a filter to the depth data. Some

common filters of choice would be the median filter [125] or

the Gaussian filter [126], but with their use comes significant

blurring and loss of texture and edge detail. As mentioned ear-

lier, there are specific filters that have edge-preserving qualities,

such as the bilateral filter [127] and non-local filter [128]. How-

ever, these filters will not only preserve edges at object bound-

aries, but the undesirable depth discontinuities caused by depth

sensing issues as well. There is also a possibility of distortion

in non-hole regions.

As with most depth images obtained via structured light

devices, stereo correspondence, and so forth, there is a sec-

ondary color or gray-scale image. The visual information

present in this accompanying image can be employed to im-

prove the accuracy of the depth image within or near object

boundaries (Table 3). It has also been utilized to reduce the
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Fig. 13: A diagrammatic taxonomy of filling approaches drawn based on their inputs and information domain used during the filling process.

noise in depth images that is generated by upsampling proce-

dures [129, 130, 10, 131, 100], where the goal is to increase

the sharpness, accuracy, and the resolution of the depth image.

Moreover, it can also be used to assist filtering approaches, as

seen in methods such as joint-bilateral filtering [132], joint tri-

lateral filtering [133], and alike.

He et al. [134] even proposed a fast and non-approximate

linear time guided filtering method, the output of which is gen-

erated based on the contents of a guidance image. It can trans-

fer the structures of the guidance image into the output and has

edge-preserving qualities like the bilateral filter, but can per-

form even better near object boundaries and edges by avoiding

reversal artefacts. Due to its efficiency and performance, it has

been used as the basis for several depth completion methods

[8, 115].

Yang et al. [104] fills the depth holes based on the depth dis-

tribution of its neighboring pixels after labeling each hole and

dilating each labeled hole to get the value of the surrounding

pixels. Cross-bilateral filtering is subsequently used to refine

the results. In Figure 14, the results are compared with the

temporal based method in [11], which will be reviewed sub-

sequently.

Chen et al. [105] attempted to detect and fill the invalid and

missing depth information using a region growing technique

based on the accompanying color image. To increase the ac-

curacy of the values used to fill holes, joint bilateral filtering
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Fig. 14: Example of the result of [104] compared to [11]. Each hole is filled
based on the distribution of its neighboring pixels [104] (reproduced from [11]).

is utilized. Once again, since the detection and filling of in-

valid depth values depends on the color image, in regions where

the color values do not match the depth values, validity of the

filled hole is questionable even though the results seem plausi-

ble and without visible defects. Figure 15 demonstrates how the

method can fill depth holes without adding artefacts or blurring.

In the method proposed by Min et al. [106], an approach

based on weighted mode filtering and a joint histogram of the

color image and the depth image is used. A weight value is

calculated according to the color similarity between the target

and neighboring pixels on the color image and used for count-

ing each bin on the joint histogram of the depth image. Sub-

sequently, they expand their method to include temporal infor-

mation for a temporally consistent estimate on the depth video.

This method is effective against depth values being blurred on

the boundaries.

With regards to improving depth images after a novel vir-

tual viewpoint has been created in DIBR (Depth Image-Based

Rendering), Chen et al. [107] utilize a simple average filter to

fill depth holes. However, to avoid smoothing and blurring the

textured regions and edges, an adaptive method that considers

edges and directions is used to enhance the accuracy of object

boundaries. Daribo et al. [108] make use of simple filtering

but based on a weighted Gaussian filter taking into account the

distance to the contours, so as to apply smoothing close to ob-

ject boundaries but avoid filtering the smooth areas in the depth

image. However, in both of these methods, the novel virtual

viewpoint is on the same axis as the real view point, which re-

stricts the applicability of the approach.

Mueller et al. [135] uses adaptive cross-trilateral median fil-

tering to reduce the noise and inaccuracies commonly found in

Fig. 15: Result of [105] compared to [11]. The depth is filled using region grow-
ing based on the accompanying color image [105] (reproduced from [105]).

depth estimates obtained via stereo correspondence. Parameters

of the filter are adapted to the local structures, and a confidence

kernel is employed in selecting the filter weights to reduce the

number of mismatches.

In [109], object boundaries are first extracted, and then a

discontinuity-adaptive smoothing filter is applied based on the

distance of the object boundary and the amount of depth discon-

tinuities. Nguyen et al. [136] proposes a propagation method,

inspired by [137], that makes use of a cross bilateral filter to fill

the holes in the warped image. Directional depth information is

propagated based on camera calibration to fill the holes caused

by disocclusion from 3D warping. Whilst the method produces

good results (Figure 16), it only accounts for holes caused by

transformation and warping.

Lai et al. [7] attempted to handle the false contours and noisy

artefacts that exist in the depth information estimated through

stereo correspondence methods. They used a joint multilateral

filter that consists of kernels measuring proximity of depth sam-

ples, similarity between the values of said samples, and similar-

ity between the corresponding color values. Shape of the filter

is adaptive to brightness variations. Although the results are

promising, there are instances of blurring in the resulting depth

images (Figure 18 - left).

A non-parametric interpolation method was recently pro-

posed in [113]. This grammar-inspired approach utilizes a seg-

mentation step [138] and redefines and identifies holes within

a set of 12 completion cases with each hole existing in a sin-

gle row of a single object. The depth pattern is propagated into

hole regions according to the individual cases. The approach re-

quires a segmentation step and only works well if enough depth

information is available within the object where the hole lies,

which means large holes cannot be filled accurately. However,
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Fig. 16: Depth completion after view rendering [136]. The method uses
cross bilateral filtering to fill the holes (reproduced from [136]).

Fig. 17: Depth enhancement via [112]. Noise is removed across object
boundaries via a slope depth compensation filter (reproduced from [112]).

for reasonably sized holes the approach works effectively and

very efficiently. Figure 19 demonstrates the efficacy of the ap-

proach [113] compared to [8, 85, 41, 37, 75] when tested on a

synthetic image simulating exaggerated texture. The results are

clearly in favor of [113]. The method in [75] provides compa-

rable results qualitatively, but [113] functions in a manner of

milliseconds, while [75] can take hours. This can be seen in Ta-

ble 2, which demonstrates that the approach (signified by “DC”

[113] in Table 2) is highly efficient compared to widely-used

comparators such as guided inpainting and filtering (GIF) [8],

second-order smoothing inpainting (SSI) [85], the fast march-

ing based inpainting method (FMM) [41], exemplar-based in-

painting (EBI) [36], Fourier-based inpainting (FBI) [75], and

diffusion-based exemplar filling (DEF) [37].

There are interpolation techniques that fill the holes horizon-

tally or vertically within the boundary of the hole by calculat-

ing a normalized distance between opposite points of the border

(horizontally or vertically) and interpolating the pixels accord-

ingly [9]. These types of approaches will face obvious prob-

lems when the target covers parts of certain structures that are

neither horizontal nor vertical. Po et al. [9] proposes a multi-

directional extrapolation technique for hole filling that uses the

neighboring pixel texture features to estimate the direction in

which extrapolation is to take place, rather than using the classic

Fig. 18: Result of [7] (reproduced from [7]) compared to [110] (left) and result
of [9] (reproduced from [9]) compared to [39] (right).

horizontal or vertical directions that create obvious deficiencies

in the completed image. They propose sets of nine directions

to fill the holes so that there is a higher possibility for the com-

pleted holes to match the texture or structure of the background

and the surrounding objects (Figure 18 - right).

Shen and Cheung [139] separate the scene into a static back-

ground and a number of dynamic foreground objects by assum-

ing different depth layers. As a result, they propose a stochastic

framework that combines various RGB-D noise models to de-

termine the label of each depth layer. In order to fill the miss-

ing depth values, joint bilateral filter is used, considering the

fact that only the neighboring pixels that are on the same depth

layer contribute to filling the central pixel. Furthermore, not

only are missing depth pixels filled, erroneous depth values are

corrected by identifying pixels whose values significantly differ

from other neighboring values and refilling them as if they were

holes. Figure 20 demonstrates the effectiveness of this method

compared to the method proposed in [12].

Xu et al. [110] criticizes the use of bilateral and trilateral fil-

ters as the major solution used in completing, enhancing, and

refining depth images in DIBR (Depth Image-Based Render-

ing) [7, 136] by pointing out that artefacts around edges and

object boundaries still exist due to the fact that color and depth

edges are characteristically different. While the method by Xu

et al. [110] does not focus on actually filling depth holes, it

does attempt to remove and refine the artefacts that can usually

be seen in and around filled areas after the holes have been filled

using other methods such as [140, 41, 36, 9]. They use water-

shed color segmentation [141] to correct any misalignments,

and enhance disoccluded regions and sharp depth edges within

or without object boundaries by extending the object bound-
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Fig. 19: Example [113] of comparing [113], [8], [85], [41], [37], [75] and linear and cubic interpolation (synthetic test image with available ground truth depth).

aries in depth images to cover the transitional edge regions of

color images (Figure 18 - left). Although the resulting depth

images are without any burring, the segmentation adds to the

computational cost of the approach.

The approach in [111] uses a joint trilateral filtering method

made up of domain, range, and depth filters. In this approach,

local patch pattern matching is first performed between the im-

age and the depth image, and the results are used to tune the

parameters of the filter. The range and depth filters are thus ad-

justed in a way that the edges in the depth image that accurately

correspond with the image edges are rewarded, and therefore,

sharper object boundaries are produced.

Matsuo et al. [112] proposed a depth refinement technique

that is not meant for hole filling but its elements can certainly

be used in filling missing depth data. Their filter attempts to

reduce noise by matching the boundary of an object in the color

image with the boundary of the object in the depth image. They

subsequently remove blurring and ringing across the boundary

of the object using an additional slope depth compensation fil-

ter. The method is not very computationally costly, but they do

note that there is always a trade-off between efficiency and ac-

curacy. An example of the results of the method when applied

to depth images with large quantities of noise and holes can be

seen in Figure 17. It is important to note once again that, as

seen in Figure 17, the approach is not created to fill holes, but

to improve and enhance depth images.

Garro et al. [10] presented a segmentation-based interpola-

tion technique to upsample, refine, and enhance depth images.

The strategy uses segmentation methods that combine depth

and color information [142, 143] in the presence of texture or

segmentation techniques based on graph cuts [144] when the

image is not particularly highly textured to identify the surfaces

and objects in the color image, which are assumed to align with

those in the depth image. The low-resolution depth image is

later projected on the segmented color image and interpolation

is subsequently performed on the output. This method is highly

dependent on the precision of the registration between the color

image and the depth image and the accuracy of the standard

segmentation step.

Discussion: Among spatial-based depth filling strategies, fil-

tering, interpolation, and extrapolation approaches are of the

most used and most efficient methods. Filtering methods are

widely used in filling depth holes, but most of them have a ten-

dency to blur the image, introduce artefacts around boundaries,

and produce invalid edges. As seen in many of the aforemen-

tioned examples, many researchers try to overcome these is-

sues by combining the filtering techniques with other methods,

constraining their filtering elements, or adding post-processing
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Fig. 20: Results of [139] and [12]. Depth is completed in [139] by assuming different depth layers for foreground and background objects (reproduced from [139]).

stages to refine the filled data. Although many of these solu-

tions are effective, they tend to diminish one of the most valu-

able aspects of this type of hole filling- the potential for high

computational efficiency.

Interpolation and extrapolation techniques are certainly the

most efficient strategies due to their low computational cost and

are applicable where real-time results are needed. However,

simplistic interpolation methods (linear, bilinear, and alike) can

cause streaking effects and are only capable of filling small

holes on flat planes, just as seen in Figures 19 and 26. There

have, however, been methods that take advantage of semantic

object boundaries and implicit or explicit diagonal associations

to plausibly fill depth holes without significant artefacts (Fig-

ures 19 and 26 - result of [113]).

4.2.1.2. Inpainting-Based Approaches

The next category of depth hole filling approaches are heav-

ily based on traditional inpainting techniques (normally used

for color images, Section 3). Although many inpainting-based

methods yield promising results (at least more so than many fil-

tering techniques), a majority of them are computationally ex-

pensive and can only be used in off-line applications of depth

hole filling.

Structure-guided inpainting [44] is used in depth hole-filling,

but the diffusion, which is used to propagate the structures, re-

sults in blurring and hence the loss of detail and texture. The

method proposed by Criminisi et al. [36] has been widely used

in depth completion. It has been utilized in depth image-based

rendering [47] and modified to recover missing data in depth

estimates acquired via stereo correspondence [48]. Telea’s

method [41] is another popular approach, but it does not per-

form well on depth images, and cannot fill large holes plausibly

(Figure 26).

Qi et al. [91] attempt to recover the missing depth informa-

tion using a fusion-based method integrated with a non-local fil-

tering strategy. They note that the object boundaries and other

stopping points that mark the termination of structure contin-

uation process are not easy to locate in depth images which

generally have little or no texture, or the boundaries or stop-

ping points might be in the hole region of the depth image.

Therefore, the color image is used to assist with spotting the

boundaries, and their corresponding positions in the depth im-

age are estimated according to calibration parameters. Their

depth inpainting framework follows the work of Bugeau et al.

[59] that takes advantage of a scheme similar to the non-local

means scheme to make more accurate predictions for pixel val-

ues based on image textures. To solve the issue of structure

propagation termination, a weight function is proposed in the

inpainting framework that takes geometric distance, depth sim-

ilarity, and the structure information within the color image into

account.

Liu et al. [8] improve upon the fast marching method-based

inpainting proposed by Telea [41] for depth value in-filling.

They essentially use the color image to guide the depth inpaint-

ing process. By assuming that the adjacent pixels that have

similar color values have a higher probability of having simi-

lar depth values as well, they introduce an additional color term

into the weighting function to increase the contribution of the

pixels with the same color. They also change the order of fill-

ing, so that the pixels near edges and object boundaries are filled

later, in order to produce sharper edges. However, even with all

the improvements, this guided depth inpainting method is still

not immune to noise and added artefacts around object bound-

aries (Figure 21 and Figure 26); therefore, the guided filter pro-
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Fig. 21: Results of depth inpainting [8]. The approach is an improved fast
marching-based [41] method guided by the color image (reproduced from [8]).

posed by He et al. [134] is used in the post-processing stage

to refine the depth image. An example of the results of this

widely-acclaimed method with and without the final filtering

stage is seen in Figure 21.

Xu et al. [86] introduced an exemplar-based inpainting

method to avoid blurring while filling holes in novel views syn-

thesized through depth image-based rendering. In the two sepa-

rate stages of warped depth image hole filling and warped color

image hole filling, the focus is mainly on depth-assisted color

image completion with texture. The depth image is assumed

to be only a gray-scale image with no texture, and is therefore

filled using any available background information (i.e. depth

pixels are filled by being assigned the minimum of the neigh-

boring values). The assumptions that depth images have no tex-

ture, that texture and relief are not of any significant importance

in depth images, and depth holes can be plausibly filled using

neighboring background depth are obviously not true, and lead

to ignoring the utter importance of accurate 3D information in

the state of the art. As a result, although the inpainting method

proposed here to complete newly synthesized views based on

depth is reasonable, the depth filling itself is lacking.

Miao et al. [81] proposed a color-assisted depth inpainting

method that uses diffusion approaches with different rules for

two separated components of a depth image: the edge regions

and the smooth regions. They note that the depth edges shrink-

ing or fattening is a common problem seen in the results of

depth image inpainting methods. To combat the issue, they in-

troduce the concept of a fluctuating edge region, which has an

adaptive size and is used in the inpainting process. The big is-

sue is that the mean of the depth values in the fluctuating edge

region is used to determine the missing pixels near the bound-

aries, which does not result in a very accurate representation.

Vijayanagar et al. [80] introduced an anisotropic diffusion-

based method that can have real-time capabilities by means of

a GPU. The color image is used to guide the diffusion in the

depth image, which saves computation in the multi-scale pyra-

mid scheme since the color image does not change. In order

to guarantee the alignment of the object boundaries in the color

image and the depth image, anisotropic diffusion is also applied

to object boundaries (see results in Figure 8).

Discussion: There is certainly a greater literature support-

ing inpainting-based depth filling methods as they are mostly

inspired by color image completion techniques, which have a

longer history in image processing and computer vision. This

class of filling approaches are capable of generating plausible

outputs, yet not without their own flaws.

Many inpainting based approaches utilize diffusion tech-

niques and partial differential equations that inherently carry

with themselves numerical instabilities and implementation is-

sues. Moreover, efficiency is always a concern when depth fill-

ing is needed as preprocessing facet of other applications. As

seen in Table 2, inpainting based methods ([41, 8]) need in the

order of seconds to process a single image. Although mod-

ern hardware and GPUs can facilitate a faster performance with

such methods, an independent cross-platform application is still

more desirable in the real-world.

Figures 19 and 26 demonstrate the efficacy of the inpainting-

based methods in [41], [8], and [37]. While in general these

approaches perform better than simple interpolation techniques

(linear or cubic interpolation) and even more complex methods

such as [85], they are still behind [75] and the very efficient

method of [113].

4.2.1.3. Reconstruction-Based Methods

Although filtering and inpainting based depth filling techniques

can produce reasonable and efficient results, there is a higher

possibility of blurring, ringing, and added artefacts especially

around object boundaries, sharp discontinuities and highly tex-

tured regions. In reconstruction-based methods, missing depth

values are predicted using common synthesis approaches. Since

a closed-loop strategy is mostly used to resolve the recon-
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Fig. 22: Local and global framework of [82]. The energy function is made up of a fidelity term (generated depth data characteristics) and a regularization term
(joint-bilateral and joint-trilateral kernels). Local filtering can be used instead of global filtering to make parallelization possible (reproduced from [82]).

Fig. 23: Example of the results of [83] compared to [41] and [8]. The method’s
energy function [83] assumes that in small local neighborhoods, depth and color
values are linearly correlated (reproduced from [83]).

struction coefficients in terms of the minimization of residuals,

higher levels of accuracy can be accomplished in depth hole fill-

ing. There are numerous different models found in the literature

that are used to represent the hole filling problem.

Chen et al. [114, 82] defines the depth hole filling problem,

specifically generated by consumer depth sensors such as Mi-

crosoft Kinect, as an energy minimization problem, the function

of which is made up of a fidelity term that considers the char-

acteristics of consumer device generated depth data and a reg-

ularization term that incorporates the joint-bilateral kernel and

the joint-trilateral kernel. The joint-bilateral filter is tuned to in-

corporate the structure information and the joint-trilateral ker-

nel is adapted to the noise model of consumer device generated

depth data. Since the approach is relatively computationally-

expensive, local filtering is used to approximate the global op-

timization framework in order to make parallelization possible,

which brings forth the long-pondered question of accuracy ver-

sus efficiency. A comparison between examples of the results

generated through both local and global frameworks is seen in

Figure 22.

Liu et al. [83] proposed a method mainly inspired by the

work of Levin et al. in image matting [145]. They designed an

energy function based on their assumption that in small local

neighborhoods, there is a linear correlation between depth and

color values. In order to remove noise and create sharper object

boundaries and edges, a regularization term originally proposed

by Barbero and Sra [84] is added to the energy function. This

Fig. 24: Result of [115] compared to [130]. [115] follows an adaptive color-
guided auto-regressive model for depth recovery (reproduced from [115]).

added term makes the gradient of the depth image be both hor-

izontally and vertically sparse, which results in less noise and

sharper edges. A comparison between the results of this method

and inpainting methods in [41] and [8], considered to be very

powerful within the literature, is shown in Figure 23.

Yang et al. [115] suggests an adaptive color-guided Auto-

regressive (AR) model for depth image recovery. Upon veri-

fying the idea that the AR model fits depth images of generic

scenes, they formulate the problem as a minimization of AR

prediction errors subject to measurement consistency. Both the

local correlation in the original depth image and the non-local

similarity in the color image play a role in creating the AR pre-

dictor for each pixel. In order to accomplish more accuracy, a

parameter adaptation strategy was designed to increase stabil-

ity. An example of the results is seen in Figure 24.

Wang et al. [103] builds upon their previous work [116] that

used a locality regularized representation (LRR) guided by the

color image to determine the weights from juxtaposed patches

to increase the contribution of the most relevant pixels. How-

ever, to mend the shortcomings of their previous method, which

ignores the effects of geometric distance and position and only

concentrates on the impact of locality on coefficient learning,

they suggest using a trilateral constrained sparse representation

(SR) which takes intensity similarity and spatial distance be-

tween reference patches and the target on sparsity penalty term,
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Fig. 25: Result of [103] compared to [12], [8], and [115]. The approach [103] uses a trilateral constrained sparse representation (reproduced from [103]).

and position constraint of central pixel in the target patch on

data-fidelity term into account. It should be noted that SR mod-

els have been successfully used in stereo vision applications

[146, 147, 148] for depth estimation, noise removal, and recon-

struction. However, in hole filling, where the depth values in the

target region are unavailable, reconstruction coefficient learning

has to be performed via the accompanying color image. Figure

25 contains a comparison between [103] and some of the more

commonly used depth filling methods of [12, 8, 115].

Discussion: Reconstruction-based methods may be of high

complexity, difficult to implement and somewhat computation-

ally expensive, but as seen with the aforementioned approaches,

they generate more desirable results, without too much blurring

or added artefacts. The object boundaries are also estimated

more accurately than most other approaches.

In Figure 26, we can see a comparison of some of the spatial-

based depth filling methods [113, 8, 85, 113], image completion

techniques [41, 37, 36], and bilinear interpolation over exam-

ples from the Middlebury dataset [149]. Table 2 presents the nu-

merical evaluation of the same approaches by comparing their

Root Mean Square Error (RMSE), Percentage of Bad Matching

Pixels (PBMP), and their run-time. As you can see, even though

spatial-based methods are certainly capable of achieving real-

time results (unlike temporal-based methods), the current liter-

ature epitomizes the long-standing trade-off between accuracy

and efficiency. Many of these methods are capable of filling

only small holes and others are extremely inefficient. Any fu-

ture work will need to work towards achieving higher standards

of accuracy and plausibility in shorter periods of time. Recent

machine learning techniques capable of learning the context and

content of a scene [64, 66, 65], may be the next leap forward.

4.2.2. Temporal-Based Depth Hole Filling

In this section, we discuss a group of algorithms that use

motion and temporal information in a stream of depth images

and perhaps additionally the accompanying color images to fill

holes and refine the depth images [11, 117].

One of the techniques most commonly used as a compara-

tor in the literature is the method proposed by Matyunin et al.

[11] that uses motion information and the difference between

the depth values in the current image and those in the consec-

utive frames to fill the holes by giving the pixels the weighted

average values of the corresponding pixels in other frames. Al-

though the results are mostly plausible, one drawback is that the

value of the edges of objects cannot be accurately estimated to

an acceptable level (Figures 14 and 15), other than the fact that

there is a need for a sequence of depth images, and therefore,

the holes in a single depth image cannot be filled. Moreover,

this is designed to be an off-line approach and cannot be uti-

lized in real-time applications. Also, when the color informa-

tion does not correspond with the depth data, the results often

contain invalid depth values.

The KinectFusion approach proposed by Izadi et al. [118]

takes advantage of the depth images of the neighboring frames

to complete the missing information during real-time 3D re-

construction. However, camera motion and a static scene are of

utmost importance and although the approach is robust, it can-

not be utilized for a static view of a scene without any camera

motion.

In [117], holes are grouped into one of two categories: the

ones created as a result of occlusion by foreground objects

which are assumed to be in motion, and the holes created by re-

flective surfaces and other random factors. Subsequently, they

use the deepest neighboring values to fill pixels according to
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Fig. 26: Comparing the results of [113], [8], [85], [41], [37], [75], [36] and bilinear interpolation (BI) over examples from the Middlebury dataset [149].

the groups they are placed in. Even though their assumptions

might be true in many real-life scenarios, they are not universal,

and static objects can be the cause of missing or invalid data in

depth images captured via many consumer depth sensors.

Fu et al. [119] focuses on repairing the inconsistencies in

depth image videos. Depth values of certain objects in one

frame sometimes vary from the values of the same objects in

a neighboring frame, while the planar existence of the object

has not changed. They proposed an adaptive temporal filter-

ing based on the correspondence between depth and color se-
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Fig. 27: An example of the results of [120] compared to [119]. The approach
[120] repairs depth inconsistencies in videos (reproduced from [120]).

quences. Sheng et al. [120] notes that the challenge in detecting

and mending temporal inconsistencies in depth videos is due to

the dynamic content and outliers. Consequently, they propose

using the intrinsic static structure, which is initialized by taking

the first frame and refined as more frames are available. The

depth values are then enhanced by combining the input depth

and the intrinsic static structure, the weight of which depends

on the probability of the input value belonging to the structure.

As seen in Figure 27, the method proposed by Sheng et al. [120]

does not introduce artefacts into the results due to motion delay

because temporal consistency is only enforced on static regions,

as opposed to Fu et al.’s method [119], which applies temporal

filtering to all regions.

Discussion: Temporal-based methods generate reasonable

results even when spatial-based approaches are unable to, and

are necessary when depth consistency and homogeneity is im-

portant in a depth sequence, which it often is. On the other

hand, the dependency on other frames is a hindrance that causes

delays or renders the method only applicable as an off-line ap-

proach. Moreover, there are many scenarios where a depth se-

quence is simply not available, but a single depth image still

needs to be completed.

4.2.3. Spatio-Temporal Depth Hole Filling

The third class of algorithms combines the elements of the

spatial and temporal based methods and attempt to fill holes

using spatio-temporal information in depth images [121, 12].

In the method proposed by Wang et al. [121], hole filling

is attempted in two stages. First, a “deepest depth image” is

generated by combining the spatio-temporal information in the

depth image and the color image, and used to fill the holes. Sub-

sequently, the filled depth image is enhanced based on the joint

information of geometry and color. To preserve local features

Fig. 28: The results of [12] and [36]. Joint-bilateral filtering is applied to neigh-
boring pixels, and a temporal consistency map is created to track the reliability
of the depth values near the holes [12] (reproduced from [12]).

of the depth image, filters that are adapted to the features of the

color images are utilized.

In another widely-used method, Camplani and Salgado [122]

use an adaptive spatio-temporal approach to fill depth holes uti-

lizing bilateral and Kalman filters. Their approach is made up

of three blocks: an adaptive joint bilateral filter that combines

the depth and color information is used, and then random fluc-

tuations of pixel values are subsequently handled by applying

an adaptive Kalman filter on each pixel. Finally, an interpola-

tion system uses the stable values in the regions neighboring the

holes provided by the previous blocks, and by means of a 2D

Gaussian kernel, fills the missing depth values.

In another method [12], the depth holes are filled using a

joint-bilateral filter applied to neighboring pixels, the weights

of which are determined based on visual data, depth informa-

tion, and a temporal consistency map that is created to track the

reliability of the depth values near the hole regions. The re-

sulting values are taken into account when filtering successive

frames, and iterative filtering can ensure increasing accuracy as

new samples are acquired and filtered. As seen in Figure 28,

the results are superior to the ones produced by the inpainting

algorithm proposed by Criminisi et al. [36], which is one of

the most commonly-used inpainting methods when it comes to

depth hole filling.

Kim et al. [123] once again uses a joint bilateral filter taking

both the color and depth information into account for spatial

enhancement. For temporal enhancement, they take advantage

of block matching applied to the previous and current frame

in the color video to detect stationary objects. Therefore by

using block matching, they can predict the movement of objects

by estimating the similarity between the blocks, measured by

mean absolute difference, from frame to frame. The method

generates a sharper and clearer depth image, as seen in Figure
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Fig. 29: The results of [123], in which block matching applied to previous and
current color frames provides temporal enhancement (reproduced from [123]).

29. However, this method only accounts for the existence of

motion, and not the length of motion vectors. Therefore, the

depth image is stabilized only for stationary objects.

Xu et al. [124] uses the temporal sequence and motion to

create a moving body detection strategy for occlusion filling.

Background differentials and the original images are used to

extract the moving bodies, and then a 4-neighbor interpolation

technique is utilized over the background areas before filling

the body areas. The edge can be reasonably preserved, but for

an interpolation method, the approach is time-consuming.

Richardt et al. [90] discussed the improvements they made

to what can be obtained from a regular video camera along-

side a time-of-flight camera. They focus on depth upsampling,

color and depth alignment, etc. One of the issues they address

is filling holes, which is performed via multi-scale completion

technique following the works in [150] and [130]. The output

undergoes joint bilateral filtering and spatio-temporal process-

ing to remove noise by averaging values from several consecu-

tive frames. A comparison of their results obtained via spatial

filtering only and using spatio-temporal filtering is presented in

Figure 30.

More recently, an approach is presented in [151] which uses a

sequence of frames to locate outliers with respect to depth con-

sistency within the frame, and utilizes an improved and more

efficient regression technique using least median of squares

(LMedS) [152] to fill holes and replace outliers with valid depth

values. The approach is capable of hole filling and sharp depth

refinement within a sequence of frames, but can fail in the

presence of invalid depth shared between frames and sudden

changes in depth due to fast moving dynamic objects within the

Method RMSE PBMP Run-time

Linear Inter. 1.3082 0.0246 25.12 ms
Cubic Inter. 1.3501 0.0236 27.85 ms
GIF [8] 0.7797 0.0383 3.521e3 ms
SSI [85] 3.7382 0.0245 51.56e3 ms
FMM [41] 1.0117 0.0365 4.31e3 ms
DEF [37] 0.6188 0.0030 8.25e5 ms
EBI [36] 0.6541 0.0062 9.68e5 ms
FBI [75] 0.6944 0.0058 3.84e6 ms
DC [113] 0.4869 0.0016 99.09 ms

Table 2: Average RMSE, PBMP, & run-time (images from Middlebury [149]).

scene.

Discussion: Spatio-temporal methods certainly take advan-

tage of the best elements of both spatial-based methods and

temporal-based methods, but they also inherit the negatives

along with the positives. Temporal and motion information

can play a part in helping with the blurring, jagging, and mis-

matched object contours that are sometimes created by spatial-

based methods. However, they also bring forth the issues of

off-line applicability and delay in real-time generation of re-

sults.

4.3. Use of Secondary Guidance Image

Many modern 3D sensing technologies can provide the user

with a depth map and a color image of the same scene. While

the filling process on its own is focused on the depth map,

there is valuable information contained within the accompany-

ing color image that can significantly improve the quality of the

results. There are approaches that take advantage of the ob-

ject boundaries and edges of the color image to preserve and

align the structures in the depth [8, 115, 111]. Even so, it has

been pointed out that this can still lead to undesirable artefacts

around edges and object boundaries since color and depth edges

are characteristically different [110]. Some other approaches

have taken to using the color image as a means to segment the

scene before depth filling takes place [73, 10, 110, 113], which

can provide the filling process with semantically valid scene

objects to sample homogeneous depth information from.

However, despite the advantages the color information can

offer, not all depth acquisition technologies produce an aligned

or easily alignable color image, and requirements of the appli-
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cation may not always allow for the additional computation that

comes with the color image processing. In these situations, a

depth filling approach that is fully dependent on the color im-

age as a secondary guidance image may not be desirable.

As such, we provide a simple overview of depth filling ap-

proaches by categorizing them based on the their use of the

color image to provide guidance for the depth completion pro-

cess. Table 3 presents the aforementioned split over the filling

approaches commonly used in the literature. Moreover, Figure

13 provides a taxonomy of the literature based on the require-

ments of the approaches in terms of their dependence on a sec-

ondary input images and the information domain used for the

filling process.

Discussion: Among depth filling approaches, some heavily

rely on the view of the scene in color to guide the depth com-

pletion process. While this can positively affect the outcome

in terms of quality and consistency, certain limitations ensue.

Aside from the color image not being available at all times,

computational requirements can create issues when the applica-

tion demands light and real-time processing. As seen in Table

3 and Figure 13, a variety of approaches operate in both spaces,

giving researchers the opportunity to select a desirable depth

filling technique.

4.4. Texture, Boundaries and Smoothing

Four simple rules were proposed in [39] to provide a set of

guidelines for generating more plausible and realistic results

when attempting to solve the problem of color image comple-

tion (Section 3). While not all of these rules apply to depth

images (depth maps obviously do not contain any color infor-

mation), preserving texture, relief and clear object boundaries

or smoothing can be important factors in selecting a suitable

depth filling approach.

In certain downstream applications, fine-grained texture and

relief over surfaces and a clear separation between objects

within the depth map is of utmost importance [113, 106],

whereas smooth and consistent scene depth [85, 108] can sat-

isfy the requirements of other systems.

It is important to note that preserving fine relief within the

Fig. 30: Result of [90] with spatial and spatio-temporal filtering [90].

depth information of a scene object is a difficult task. Addi-

tionally, depth filling is an inherently ill-posed problem. As a

result, if texture and relief generation is unnecessarily carried

out based on insufficient information, the resulting output can

contain more outliers and invalid depth information, which is a

hindrance on its own.

Hence, it is important for researchers to identify what is ex-

pected of the 3D information gathered from the scene in terms

of purpose and functionality to decide what filling approach can

produce the ideal results for their specific task.

Table 4 presents a list of depth filling approaches categorized

according to their main objectives. Some techniques concen-

trate on providing very accurate texture and object boundaries,

while others generate overly smooth depth in the output with

their focus on the structural integrity of the scene depth.

Discussion: The exact characteristics of a depth map de-

pends on its purpose. In certain applications such as object

recognition [153, 154] or detection [155], accurate boundaries

and relief of an object in the depth map can play an impor-

tant role in the semantic value of that object within the scene.

However, other applications such as localization and mapping

[78, 79] do not require fine texture and relief for each individ-

ual scene object and accurate structure within the scene depth

is sufficient. As seen in Table 4, different filling techniques ex-

ist that can generate complete depth either with fine relief or

smoothed object surfaces.
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Input Image Required Advantages Disadvantages Examples of Filling Techniques

Depth and Color Images • more processing information • possible lack of color input [75], [73], [88], [89], [139], [115], [105], [106]
• more accurate results • more computationally intensive [8], [7], [91], [80], [83], [116], [123], [113]

Depth Image Only • no dependence on extra inputs • less information for processing [104], [107], [108], [135], [136], [109], [9], [110]
• more efficient processing • lower quality outputs [86], [11], [117], [118], [12], [90], [151], [41]

Table 3: Examples of filling approaches categorized according to the type of images required as their input.

5. Conclusion

In this survey, we focused on reviewing the various tech-

niques that have been developed to complete, enhance, and re-

fine depth images. Although significant efforts are under way

with regards to improving scene depth capture technologies,

there are still several issues blocking the path to a perfect depth

image such as missing data, invalid depth values, low resolu-

tion, and noise.

Although this is still an area of increasing interest and im-

portance, numerous approaches have already been proposed to

deal with the aforementioned issues. Most of the methods are

unique and propose creative solutions to the problem, but we

have attempted to categorize the existing algorithms according

to the nature of their formulation, information domain needed

for the filling process, input requirements, and the focus of the

approach, in order to provide a better means of analysis and

understanding.

The problem of depth hole filling has been formulated in a

variety of different ways, as has the related problem of color im-

age completion, which offers creative solutions appropriate for

different application facets. Diffusion-based and energy mini-

mization solutions to the problem are accurate with respect to

structural continuity within the scene depth and can produce

smooth surfaces within object boundaries, which can be a desir-

able trait for certain applications. However, these solutions are

often inefficient, computationally expensive, and fraught with

implementation issues. Similar to some of the most success-

ful image completion approaches, the depth filling problem can

be solved using an exemplar-based paradigm, which can accu-

rately replicate object texture and relief as well as preserve the

necessary geometric structures within the scene. There are, of

course, a variety of other problem formulations, such as ma-

trix completion, labelling, and alike, each focusing on certain

aspects of the completed depth output.

As for the input requirements for a depth filling approach,

depending on the acquisition method, depth images are some-

times obtained along with an aligned or easily alignable color

image of the same scene. The information contained within this

color image can be used to better guide the filling approach ap-

plied to the depth image. However, not all depth images are

accompanied by a color image and processing the color infor-

mation intensifies the computation that may not be necessary

depending on the requirements of the application.

Additionally, some approaches produce completed depth im-

ages with fine-grain texture, relief, and accurate object bound-

aries in mind, which is an outcome that is very desirable for

certain applications. On the other hand, some systems only re-

quire accurate structure and scene geometry within the depth

information and smooth object surfaces with no granular tex-

ture and relief whatsoever are sufficient.

Regarding the information domain used to carry out the fill-

ing process, there are spatial-based methods that limit them-

selves to the information in the neighboring regions of the depth

image and possibly the accompanying color image. Some of

these algorithms make use of filtering techniques, while some

utilize interpolation and extrapolation approaches. The filter-

ing, interpolation, and extrapolation methods can provide fast

and clean results but suffer from issues like smoothed bound-

aries and blurred edges. Many researchers have proposed us-

ing inpainting-based techniques, which have been proven suc-

cessful in completing color images, for filling depth holes. Al-

though the results are satisfactory, these methods are not all ef-

ficient and can generate additional artefacts near target and ob-

ject boundaries. Reconstruction methods provide very accurate

results by using techniques inspired by scene synthesis meth-

ods. However, they are difficult to implement and mostly have
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Main Focus of Filling Approach Examples of Filling Techniques

Relief and Object Boundary Preservation [75], [139], [113], [8], [83], [90], [89], [106], [111], [107], [123]

Accurate Structure and Smooth Surfaces [86], [48], [47], [12], [104], [105], [41], [91], [109], [85], [112]

Table 4: Examples of filling approaches categorized according to the main focus of the filling approach (structure vs. texture and accurate boundaries).

a strict dependency on the accompanying color image.

Temporal-based hole filling techniques take advantage of the

motion information and the values in the neighboring frames

in a sequence to complete depth images. Sometimes the in-

formation in a single depth image is not enough to complete

that image, which is where spatial-based methods fall short.

Temporal-based approaches, however, do not suffer from this

issue and have a larger supply of information at their disposal.

This class of methods is still not perfect and the need to pro-

cess other frames to complete a depth image makes them more

suited for off-line applications rather than real-time systems.

Finally, various spatio-temporal-based methods have been

proposed that use both the spatial information in the depth im-

age and the motion and temporal information extracted from

a depth sequence to complete a depth image. Although these

methods can be more accurate than spatial-based methods and

more efficient than temporal-based methods, they still suffer

from the issues of both these categories.

Based on our careful examination of all the approaches dis-

cussed in this study and our own experimental comparisons, we

observe general trends with respect to output quality, input re-

quirements, algorithm complexity and speed. The needs of an

individual user based on these considerations determines their

choice of approach.

In terms of speed, spatial-based methods are essentially the

only group of techniques potentially capable of processing im-

ages in a real-time fashion, even though they may not always

live up to this potential. Within this category, filtering, interpo-

lation, and extrapolation techniques are the most efficient with

the least amount of complexity while constrained when it comes

to output quality. Inpainting-based approaches are more com-

plex and in certain cases numerically unstable, yet they offer

a better trade-off between efficiency and output quality. On

the other hand, reconstruction-based methods, though complex,

difficult to implement, and somewhat dependent on scene con-

ditions (e.g. scene object sizes, static objects, dynamic view-

point, and alike), can produce higher quality outputs with ac-

ceptable efficiency.

As for input requirements, an accompanying color image

may or may not be indispensable to specific spatial-based meth-

ods, but there is no need for temporal depth information re-

ceived from others adjacent frames, which is indeed a necessity

for temporal-based and spatio-temporal-based methods, ren-

dering their use less than satisfactory in applications that de-

mand real-time depth processing. Moreover, although these

approaches can suffer from issues stemming from complexity,

they can provide homogeneous and consistent depth within a

stream, which is an important quality for certain applications.

Although the taxonomies drawn in this work may create an

illusion of certain unsolvable constraints on the problem in gen-

eral, new and innovative techniques that focus on efficiently

generating more accurate depth images with higher qualities

can be developed by considering semantic aspects such as scene

analysis, object recognition, and constrained reconstruction.

Furthermore, whilst future avenues of research need to ex-

plicitly consider computational efficiency, within the contem-

porary application domains of consumer depth cameras and

stereo-based depth recovery, it is also highly likely they will

be able to exploit temporal aspects of a live “depth stream”. It

is thus possible that both temporal and spatio-temporal genres

within our taxonomy will become the primary areas of growth

within this domain over the coming years. This trend will be

heavily supported by aspects of machine learning and poten-

tially on-line machine learning as depth streams become in-

creasingly widespread, of which we see limited leverage in

depth completion and enhancement to date [100], and that of
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depth-driven odometry [156] and related scene mapping tech-

niques.
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