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Abstract. We address the problem of hole filling in depth images, obtained from
either active or stereo sensing, for the purposes of depth image completion in an
exemplar-based framework. Most existing exemplar-based inpainting techniques,
designed for color image completion, do not perform well on depth informa-
tion with object boundaries obstructed or surrounded by missing regions. In the
proposed method, using both color (RGB) and depth (D) information available
from a common-place RGB-D image, we explicitly modify the patch prioritiza-
tion term utilized for target patch ordering to facilitate improved propagation of
complex texture and linear structures within depth completion. Furthermore, the
query space in the source region is constrained to increase the efficiency of the
approach compared to other exemplar-driven methods. Evaluations demonstrate
the efficacy of the proposed method compared to other contemporary completion
techniques.
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1 Introduction

As three dimensional scene understanding based on scene depth is becoming ever more
applicable, missing or invalid depth information has resulted in the need for special
case facets of subsequent processing (e.g. semantic understanding, tracking, odometery
and alike), and the prevalence of low cost, yet imperfect, depth sensing has seen depth
completion emerge as an important research topic.

Despite significant prior work in color image completion [1–3, 6, 8, 11], depth fill-
ing is by contrast scantly present within the literature [4, 7, 9, 10, 13, 30] emerging as
a relatively new research area posing significant challenges [12]. Although there have
been many attempts to use structure-based or exemplar-based color image completion
approaches for depth hole filling [1–3,5], particular factors such as the absence of gran-
ular texture, clear object separation and the lack of in-scene transferability of varying
depth sub-regions all create notable obstacles not present in the corresponding color
completion case [29].

In this paper, we propose an improved exemplar-based inpainting approach [1] for
depth completion (Fig. 1) that adds additional “boundary” and “texture” terms to aid in
determining the priority of the sample patches used to propagate the structure and tex-
ture into the target region (Fig. 2). High computational demands, commonly associated
with such approaches, are also reduced by dynamically constraining the query space
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based on the location of spatially adjacent sample patch selections (Section 3). This is
demonstrated by providing superior results within a traditional exemplar-based image
completion paradigm against other leading contemporary approaches (Fig. 1).

2 Prior Work

Prior work in depth hole filling [7,9,12,14,23,24] is not as comprehensive as color im-
age completion. In the depth filling literature, there have been attempts to fill color and
depth via depth-assisted texture synthesis in stereo images [15], a myriad of approaches
utilizing filters [13,16], temporal-based methods [17,18], reconstruction-based methods
[19, 20], and others [7, 9, 10, 21]. We focus on some of the most relevant [4, 7, 10, 21].

In a notable work, [7] improves upon the fast marching method-based inpainting
proposed by [3] for depth filling. By assuming that the adjacent pixels with similar
color values have a higher probability of having similar depth as well, they introduce an
additional “color” term into the function to increase the contribution of the pixels with
the same color.

By contrast, [21] uses a fusion-based method integrated with a non-local filtering
strategy. Their framework follows [22], utilizing a scheme similar to non-local means
to make accurate predictions for depth values based on image textures.

Fig. 1. Exemplar results on the KITTI dataset [25]. RGB denotes the color image, and D original
(unfilled) disparity map. Results are compared with [1–3, 7, 9, 10]. Flaws are marked in red.

Herrera et al. [10] propose an approach similarly guided by the color image based on
the assumption that every surface is continuous and smooth within their energy function
formulation. This “smoothness” term encourages flat depth planes in the completion
process whilst ignoring the possibility of visible texture or relief in the filled depth
region and hence limiting plausible (reasonable) completion characteristics. Zhang et
al. [4] improve [1] by adding a “level set distance” term to the priority function. A joint
trilateral filter performs smoothing post process.

Overall, although such exemplar-based methods have rarely been used in depth
completion, they have the tendency to preserve texture. With increased granularity in
modern depth sensing and increasing detail in depth scene rendering (e.g. illumination
correction), the consideration of texture detail (relief) within any depth filling process is
now paramount. As such, we propose an improved exemplar-based formulation capable
of efficient and plausible depth texture completion.
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Fig. 2. Target region and target boundary (a), target/candidate patches (b).

3 Proposed Approach

In our approach, improvements are made to the framework of the exemplar-based in-
painting [1] to create a more suitable and efficient depth filling approach. In the method-
ology of [1], the target region and its boundary are identified, a patch is selected to be
inpainted and the source region is queried to find the best-matching patch via an appro-
priate error metric ( e.g. sum of squared differences). After the candidate patch is found,
all the information is updated and the process starts over. An extremely important factor
in generating desirable results is the order in which these patches are selected for filling.

In [1], the priority of each patch is given by:

P (p) = C(p)D(p) (1)

where C(p), the “confidence” term, and D(p), “data” term, are determined by:

C(p) =

∑
q∈Ψp∩(I−Ω) C(q)

|Ψp|
(2)

D(p) =
|∇I⊥p · np|

α
(3)

where |Ψp| is the area of the selected patch Ψp, I is the image, Ω is the target region, α
is the normalization factor (255), np is a unit vector orthogonal to the target boundary,
and⊥ is the orthogonal operator (Fig. 2). Before the inpainting begins, the “confidence”
term is initialized as:

C(p) =

{
0, ∀p ∈ Ω
1, ∀p ∈ Ω − I

(4)

The “confidence” term prioritizes patches constrained by more valid depth values
(fewer missing neighbors) and the “data” term encourages the filling of patches into
which isophotes (lines of equal intensity) flow. This framework creates a balance be-
tween these two terms for a more plausible inpainting [1]. However, when complet-
ing real-world depth images with large holes covering entire objects, boundaries, and
isophotes, the information in the accompanying color image (within RGB-D) can be
used to create a suitable depth filling approach.
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Fig. 3. Exemplar results on the Middlebury dataset [28]. RGB denotes the original color images,
GT the ground truth depth, and D the original (unfilled) depth maps. Results are compared with
[1–3, 7, 9, 10]. All flaws are marked in red.

In our approach, the “confidence” term is initialized and updated based on the depth
image while the “data” term is calculated over the corresponding color image region
(from RGB-D). To ensure a better flow of dominant linear structures into the target
region, a “boundary” term is added based on the color image:

B(p) =

∑
q∈Ψp∩(I−Ω)(|Gx≥τ (q)|+|Gy≥τ (q)|)

|Ψp|
(5)

where Gx≥τ and Gy≥τ are strong intensity gradients in the color image in the x and
y directions respectively, with τ being the gradient threshold (e.g. τ = 0.7). This term
essentially prioritizes patches that contain a larger number of pixels that are part of a
significant edge or gradient structure in the color image. This ensures a better propaga-
tion of object boundaries into the target region. As seen in Fig. 4, the original exemplar-
based approach [1] gives equal priority to points A, B, and C (Fig. 4, result of [1]) while
the proposed method prioritizes points B and C because of the “boundary” term (Fig.
4, proposed approach), which greatly effects the quality of the results.

Additionally, a “texture” term is introduced to guarantee a better propagation of
texture into the target region. Since the color and depth gradients in certain parts of
an image do not always match due to factors such as lighting and perspective, color
information is not always a great indicator of texture. However, soft depth gradients
always point to texture and relief, even though a depth image might appear smooth to the
human eye. The “texture” term, which is applied to the depth image, determines which
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Method
Plastic (1270× 1110) [28] Baby (1240× 1110) [28] Bowling (1252× 1110) [28]
RMSE PBMP Run-time (s) RMSE PBMP Run-time (s) RMSE PBMP Run-time (s)

GIF [7] 0.7947 0.0331 3.10800 0.6008 0.0095 2.58000 0.9436 0.0412 4.87500
SSI [10] 1.7573 0.0102 42.3600 2.9638 0.0180 41.2000 6.4936 0.0455 71.1200
FMM [3] 0.9580 0.0435 0.9390 0.83490 0.0120 0.79400 1.2422 0.054 1.1190
FEI [2] 0.6952 0.0032 1641.33 0.6755 0.0024 995.250 0.4857 0.0035 1937.47
FBF [9] 0.8643 0.0023 >20000 0.6238 0.0081 >20000 0.5918 0.0072 >20000
EBI [1] 0.4081 0.0066 2145.71 0.9053 0.0025 1196.49 0.8733 0.0045 2921.15
Ours 0.3843 0.0051 1538.16 0.6688 0.0021 879.730 0.7021 0.0037 1606.75

Table 1. Comparing the RMSE (root-mean-square error), PBMP (percentage of bad matching
pixels), and mean run-time of the methods over the Middlebury dataset [28].

parts of the image surrounding the target boundary contain texture and encourages the
process to fill them earlier to propagate texture in the target region:

T (p) =

∑
q∈Ψp∩(I−Ω)|Gx<τ (q)|+|Gy<τ (q)|

|Ψp|
(6)

where Gx<τ and Gy<τ are slight intensity gradients in the depth image in the x and
y directions respectively, with τ being the gradient threshold (e.g. τ = 0.3). Small-
est changes in the depth image are identified and taken into account for a better relief
texture propagation. As seen in Fig. 5, in which significant edges and linear structures
are hard to find, the proposed method correctly prioritizes patches with slight depth
changes and functions better than the original approach [1]. After adding the two afore-
mentioned terms, the priority evaluation function is transformed to:

P (p) = C(p)D(p)B(p)T (P ) (7)

where C(p), D(p), B(p), T (P ) are the “confidence” term (based on the depth image),
“data” term (based on the color image), “boundary” (based on the color image), and
the “texture” term (based on the depth image) respectively.

Finally, in most exemplar-based methods [1, 4, 6, 11], the entire source region is
queried for candidate patches. However, our analysis shows that most suitable candi-
dates for any patch are located close to where the best-matching candidates were found
for adjacent patches in previous patch filling iterations. As a result, a dynamic search
perimeter is created when sampling candidates for a patch with previously filled neigh-
bors (Fig. 6). The maximum and minimum of x and y indices of the selected candidates

Fig. 4. A demonstration of the effect of the “boundary” term.
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Fig. 5. A demonstration of the effect of the “texture” term.

for the previously-filled adjacent patches are used to determine the perimeter. Tests run
over 20 different color and depth image pairs indicate that in 91.2% of queries, the
best matching patch was found inside perimeter. Although this can negatively effect the
quality of the results for the remaining 8.8% of patches, the efficiency is improved by
an average of 31% (with negligible standard deviation), which is significant.

4 Experimental Results

Hole filling is fraught with constant compromises between efficiency and accuracy. The
proposed approach is an example of this, as it outperforms many of its predecessors
qualitatively and quantitatively [1, 3, 7, 10] while being faster than others [1, 2, 9]. Re-
sults were evaluated using a number of images, but in the interest of space, only a
few are presented here. We utilize the Middlebury dataset [28] to provide qualitative
and quantitative evaluation. Fig. 3 demonstrates that the proposed method generates
plausible results without significant invalid outliers, blurring, jagging or other artefacts
compared to other approaches [1–3, 7, 9, 10]. All flaws and artefacts are marked in Fig.
3. Table 1 provides quantitative evaluation of the proposed approach against the same
comparator set (GIF is the guided inpainting and filtering [7], SSI the second-order
smoothness inpainting [10], FMM the fast marching method [3], FEI the framework
for exemplar based inpainting [2], FBF the Fourier basis for filling [9], and EBI the
exemplar-based inpainting [1]). As shown in Table 1, the method is in balance between
efficiency and accuracy. While it is more efficient than other exemplar-based methods
[1,2], it has a smaller root-mean-square error and fewer bad pixels (based on the evalu-
ation methodology of [27]) than faster comparators [3,7]. Experiments were performed
on a 2.30GHz CPU (Table 1).

Fig. 1 demonstrates the results of the proposed method in comparison with [1–3, 7,
9, 10] when applied to examples from the KITTI dataset [25] (resolution, 1242× 375).

Fig. 6. Constraining the query space to improve efficiency.
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Depth is calculated using [26] with significant disparity speckles filtered out. The pro-
posed method results in sharp images with fewer additional artefacts (Fig. 1). The clos-
est performing approach, the variational framework for exemplar-based approach of [2],
shows comparable quantitative performance (RMSE/PBMP, Table 1) in some aspects
but our approach offers a mean computational saving of 15.2% over [2]. The faster ap-
proaches [3, 7, 10] have significantly worse completion performance (Table 1, Fig. 1 &
3) than our approach. We have created a video displaying the results of the work. We
invite you to view the video, which can be found here: https://vimeo.com/251792601.

5 Conclusions

In this paper, the problem of depth completion is addressed in an exemplar-based frame-
work with a focus on a balance between efficiency and attention to surface (relief) detail
accuracy. While exemplar-based methods, are mostly used for color images, their abil-
ity to preserve texture in the target region makes them suitable for depth filling when
texture is of importance. Here, the priority term that determines the order of patch
sampling has been modified to allow for a better propagation of strong linear struc-
tures and texture into the target region. Moreover, by constraining the query space, the
method performs more efficiently than other exemplar-based approaches. Our evalua-
tion demonstrates that while the efficiency of the proposed method is better than other
exemplar-based frameworks, the plausibility and statistical relevance of the depth filled
results compete against the accuracy of contemporary filling approaches in the field.
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10. Herrera, D. and Kannala, J. and Heikkilä, J.: Depth Map Inpainting under a Second-Order
Smoothness Prior. In: Scandinavian Conf. Image Analysis, pp. 555–566 (2013)

11. Kumar, V. and Mukhopadhyay, J. and Mandal, S.K.D.: Modified Exemplar-Based Image
Inpainting via Primal-Dual Optimization. In: Int. Conf. Pattern Recognition and Machine In-
telligence, pp. 116–125. Springer (2015)

12. Breckon, T.P. and Fisher, R.B.: Amodal Volume Completion: 3D Visual Completion. In:
Computer Vision and Image Understanding. 99(3), 499–526 (2005)

13. Camplani, M. and Salgado, L.: Efficient Spatio-Temporal Hole Filling Strategy for Kinect
Depth Maps. In: IS&T/SPIE Electronic Imaging, pp. 82900E–82900E (2012)

14. Breckon, T.P. and Fisher, R.B.: A Hierarchical Extension to 3D Non-parametric Surface
Relief Completion. In: Pattern Recognition, 45, 172–185 (2012)

15. Wang, L. and Jin, H. and Yang, R. and Gong, M.: Stereoscopic Inpainting: Joint Color and
Depth Completion from Stereo Images. In: Int. Conf. Computer Vision and Pattern Recogni-
tion, pp. 1–8 (2008)

16. Camplani, M. and Salgado, L.: Adaptive Spatio-Temporal Filter for Low-Cost Camera Depth
Maps. In: Int. Conf. Emerging Signal Processing Applications, pp. 33–36 (2012)

17. Matyunin, S. and Vatolin, D. and Berdnikov, Y. and Smirnov, M.: Temporal Filtering for
Depth Maps Generated by Kinect Depth Camera. In: 3DTV Conference, pp. 1–4 (2011)

18. Berdnikov, Y. and Vatolin, D.: Real-Time Depth Map Occlusion Filling and Scene Back-
ground Restoration for Projected-Pattern Based Depth Cameras. In: Graphic Conf. IETP
(2011)

19. Chen, C. and Cai, J. and Zheng, J. and Cham, T. and Shi, G.: Kinect Depth Recovery Using a
Color-Guided, Region-Adaptive, and Depth-Selective Framework. In: ACM Trans. Intelligent
Systems and Technology, 6(2), 12 (2015)

20. Wang, Z. and Hu, J. and Wang, S. and Lu, T.: Trilateral Constrained Sparse Representation
for Kinect Depth Hole Filling. In: Pattern Recognition Letters, 65, 95–102 (2015)

21. Qi, F. and Han, J. and Wang, P. and Shi, G. and Li, F.: Structure Guided Fusion for Depth
Map Inpainting. In: Pattern Recognition Letters, 34(1), 70–76 (2013)

22. Bugeau, A. and Bertalmı́o, M. and Caselles, V. and Sapiro, G.: A Comprehensive Framework
for Image Inpainting. In: IEEE Trans. Image Processing, 19(10), 2634–2645 (2010)

23. Bevilacqua, M. and Aujol, J. and Brédif, M. and Bugeau, A.: Visibility Estimation and Joint
Inpainting of Lidar Depth Maps. In: Int. Conf. Image Processing, pp. 3503-3507 (2016)

24. Zuo, Y. and Wu, Q. and An, P. and Zhang, J.: Explicit Measurement on Depth-Color Incon-
sistency for Depth Completion. In: Int. Conf. Image Processing, pp. 4037–4041 (2016)

25. Geiger A. and Lenz P. and Stiller C. and Urtasun R.: Vision meets Robotics: The KITTI
Dataset. In: Robotics Research (2013)

26. Yamaguchi, K. and McAllester, D. and Urtasun, R.: Efficient Joint Segmentation, Occlusion
Labeling, Stereo and Flow Estimation. In: European Conf. Computer Vision, pp. 756–771.
Springer (2014)

27. Scharstein, D. and Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms. In: Int. J. Computer Vision, 47, 7–42 (2002)

28. Hirschmuller, H. and Scharstein, D.: Evaluation of Cost Functions for Stereo Matching. In:
Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2007)

29. Atapour-Abarghouei, A. and Breckon, T.P.: A Comparative Review of Plausible Hole Filling
Strategies in the Context of Scene Depth Image Completion. In: J. Computers and Graphics,
72, 39–58 (2018)

30. Atapour-Abarghouei, A. and Breckon, T.P.: DepthComp: Real-time Depth Image Comple-
tion Based on Prior Semantic Scene Segmentation. In: British Machine Vision Conference,
pp. 208.1-208.13 (2017)


	Lecture Notes in Computer Science
	Introduction
	Prior Work
	Proposed Approach
	Experimental Results
	Conclusions


