
2023 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

FEGR: Feature Enhanced Graph Representation
Method for Graph Classification

Mohamad Abushofa
School of Computing
Newcastle University

Newcastle upon Tyne, United Kingdom
m.e.a.abushofa2@ncl.ac.uk

Amir Atapour-Abarghouei
Department of Computer Science

Durham University
Durham, United Kingdom

amir.atapour-abarghouei@durham.ac.uk

Matthew Forshaw
School of Computing
Newcastle University

Newcastle upon Tyne, United Kingdom
matthew.forshaw@ncl.ac.uk

A. Stephen McGough
School of Computing
Newcastle University

Newcastle upon Tyne, United Kingdom
stephen.mcgough@newcastle.ac.uk

Abstract—Graph representation plays a key role in graph
analytics to perform a variety of downstream machine-learning
tasks. This paper presents a novel method for extracting expres-
sive graph representation based on a combination of statistics
captured from a graph and node properties. We use both local
and global-level information along with the original node proper-
ties to extract a meaningful feature representation of the graph.
This allows us to build expressive graph descriptors that can be
run with limited training data and computational resources and
achieve competitive results. We discuss the merits of the proposed
approach in terms of sensitivity, running times, and stability. Our
evaluation of various graph classification benchmark datasets
shows that the proposed method either outperforms or provides
similar results to state-of-the-art methods. We further outline the
potential future directions in graph machine learning research.

Index Terms—Graph representation; concatenated features;
Non-parametric approach; Graph descriptor.

I. INTRODUCTION

Graph representation has a long and illustrious history of
being used to solve complicated real-world problems covered
in many fields, such as chemistry, biology, and computer
science. A graph is formed from a collection of nodes which
are connected together via edges. Both nodes and edges
may be tagged up with data – called here properties (e.g.,
in a social network, nodes representing people may have
properties of name and age). A range of approaches to study-
ing network activity and solving real-world problems such
as node classification, graph classification, link prediction,
and community discovery, have recently been developed [1].

Machine learning algorithms have had great success in the last
decade on a range of applications, such as computer vision,
image classification, and speech generation. However, these
can not be directly applied to graph structured data as such
methods require data to be in structured tensor spaces, while
graphs have complex and combinatorial structures. Thus, an
expressive representation of graph structure in a structured
(vector) space is required to apply machine learning methods
to graph problems.

One of the more recent areas of research is graph represen-
tation, which tries to represent a graph in a low-dimensional
Euclidean space [2]. The basic premise is to represent a graph
(containing real-world entities and relationships) as points in a
low-dimensional feature space whose geometry shows the cor-
respondence between the entities – thus embedding the graph
within a vector space. The graph embedding problem is closely
connected to traditional machine learning data compression
tasks, such as multi-dimensional scaling and dimensionality
reduction [3], in which large amounts of data are reduced or
compressed to lower dimensional space. To find more tractable
representations, these approaches look for repeats and regular-
ities in the data. Graph embedding methods, on the other hand,
necessitate taking into account the full latent geometry and
must meet permutation invariance (i.e., yield the same repre-
sentations for isomorphic graphs), scalability (manage graphs
of varying sizes), memory efficiency, expressiveness (good
embedding or representation), and computational efficiency
requirements. Meeting all of these requirements at the same
time makes graph representation challenging [4].

Graph representation approaches have seen considerable
uptake in recent years, with a number of approaches proposed.
These approaches are divided into two categories: Graph
Neural Networks (GNNs) [5] and graph descriptors. GNNs
use an end-to-end learning architecture to learn the desired
embeddings by utilising node features. On the other hand,
graph descriptors are typically based on graph spectrum (set

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM ’23, November 6–9, 2023, Kusadasi, Turkey © 2023
Copyright is held by the owner/author(s). ACM ISBN 979-8-4007-
0409-3/23/11. https://doi.org/10.1145/3625007.3627600

mailto:permissions@acm.org

of graph eigenvalues of the adjacency matrix) [6] and other
metrics and do not leverage node features, resulting in a
significant false positive rate [7], [8]. There have been attempts
to use graph descriptors such as using a ‘fingerprint’ of metrics
to represent a graph [9] and Distributed Graph Statistical
Distances (DSGD) [1] that extracts graph representation in
centralised and distributed environments using very simple
graph statistics. However, to the best of our knowledge, there is
no prior work which uses only features which are concatenated
from real properties from the graph with extracted features
from the graph and node metrics. We hypothesise that this may
increase the performance of graph machine-learning tasks.

We propose a novel graph descriptor we denote FEGR (Fea-
ture Enhanced Graph Representation). FEGR takes advantage
of statistical measures used in graph fingerprints [9], while
simultaneously addressing their limitations by adding node
properties to the statistical measures to produce expressive
graph embeddings. We focus on the experimental setting of
DGSD [1] to compare. In this study, we use two types of
features: local and global features to construct the graph
signature. For the local features, we consider the degree, clus-
tering coefficient, average degree of neighbours, and average
clustering coefficient of neighbours. Aggregating these local
features is not enough to produce a good representation of the
structure of the entire graph. Thus, for the global features, we
consider the largest five eigenvalues, the number of connected
components, the total number of nodes, and the total number of
edges in the graph. We initially, compute the local features and
then take the median, mean, standard deviation, skewness, and
kurtosis to form the graph descriptor. We finally compute the
global measures and concatenate these with the local features
and features extracted from the properties of nodes/edges. Our
main contributions are thus summarised as follows:

• We enrich the graph embedding by incorporating aggre-
gated original feature information associated with each
node with local and global graph measures.

• We explore the graph representation problem through
various graph theoretical tools such as networkx and
graph-tools and subsequently utilise nine features for
bioinformatics graph classification.

• We evaluate the proposed method in different experimen-
tal settings, including graph classification, sensitivity, and
the evolution of nodes and edges in a graph.

• We have made the source code publicly available to
enable better reproducibility of the results:1.

II. MOTIVATION AND REQUIREMENTS

We provide the motivation behind this work by depicting
an example of a graph machine learning (ML) application.
Through this example, we depict a number of issues facing
graph representation, such as accuracy and scalability. Ac-
cordingly, we elaborate on how these issues can be mitigated.
Before, going to the motivation scenario, we discuss graph
machine learning tasks as follows:

1https://github.com/mohamad-1977/FEGR

Fig. 1: Graph Representation Framework

A. Graph Representation

Formally, the graph representation problem can be defined
as follows. Given a graph G = (V,E), where V is the set of
vertices (sometimes called nodes) and E is the set of edges
(sometimes called links), the main goal is to design a function
f : G → Rd, where d << |V | which encodes or embeds
the node v, ENC(v), to produce zv ∈ Rd, As an example,
the embedding of node v in the embedding space is shown
in Figure 1. The graph representation problem is challenging
due to the combinatorial nature of graphs. The representation
function f should satisfy several properties including but not
limited to: i) permutation invariance – that the function does
not depend on the arbitrary ordering of the rows/columns in the
adjacency matrix, ii) time and memory efficiency, iii) flexible
embedding size, iv) stable results, and v) scalability.

Before, discussing the motivation scenario, we discuss com-
mon graph machine-learning tasks that can benefit from more
robust graph representations as follows:

1) Graph Classification: Given a set of graphs G =
g1, g2, . . . , gn with their corresponding labels Y =
y1, y2, . . . , yn, the goal is to learn/extract a representation hg

for the given graph to predict a label yg for an unseen graph
g. The graph classification problem has diverse applications
in various domains, such as bioinformatics, social networks,
communication networks, and computational biology [10]. For
example, in bioinformatics, we can perform toxicity prediction
using graph classification where molecular graphs with their
corresponding labels (binary, in this case, toxic and not toxic)
can be provided as input to train a graph classification model.
This can be used to predict the label of a new molecular graph
[11].

2) Link Prediction: In the link prediction task, the goal
is to learn a representation vector hv for each node v to
predict a link between two nodes vi, vj , which is a function
of f(hi, hj). Link prediction is widely adopted for knowledge
graph completion and recommendation systems in diverse
applications.

B. Motivation Scenario

Recently, graph machine learning applications have found
their way into the healthcare sector [12]. Some medical data
are represented as graphs, such as patient records and diseases
[13]. Therefore, this data requires a model to convert it to

the embedding space. This representation then goes on down-
stream machine learning tasks, such as graph classification,
node classification, or link prediction. Thus, finding a robust
representation model leads to better downstream results. In
contrast, a low representation model leads to low accuracy,
which may harm decisions required in the health sector.
However, graph representations can give rise to some issues
as well as challenges. For instance, as the computational
complexity of graph representation approaches often grows
exponentially with the number of nodes, these approaches are
often unsuitable for massive graphs. Therefore, it is crucial to
identify the existing issues and challenges, and herein lies the
need for a robust model for this representation. As such, our
approach is driven by the following requirements:

• Scalability: the new approach should be highly scalable,
to graphs of millions of vertices / edges, and capable of
doing the classification in a reasonable time. Ideally, the
approach should be portable to a many-core or distributed
graph processing system to help with scalability.

• Sensitivity To Graph Size: our approaches should take
the size and order of the graphs into consideration.

• Sensitivity To Topologies: it should be able to detect the
difference between graphs which are highly structurally
and topologically similar.

III. RELATED WORK

Node features play a vital role in learning graphs [2].
Graph representation approaches have exploded in popularity
in recent years, with a slew of new approaches being sug-
gested. Graph Neural Networks (GNNs) [2] use an end-to-
end learning architecture to learn the desired embeddings by
utilizing node features. Graph descriptors, on the other hand,
extract node embeddings using statistical measurements rather
than exploiting node attributes. The main drawback of GNNs
is that they require lots of training data, are computationally
expensive, and thus they do not scale well to massive networks.
Graph descriptors, on the other hand, are typically based on
graph spectrum and other metrics and do not leverage node
properties, resulting in a large false-positive rate. To overcome
these drawbacks, we propose a novel graph descriptor we
denoted as FEGR (Feature Enhanced Graph Representation).

We propose using eight aggregated graph-theoretic proper-
ties along with the aggregated node features to encode the
graph into a lower dimensional space to deploy into any
downstream machine learning task. In this section, we survey
graph representation methods categorized into two categories:
non-parametric and parametric approaches.

A. Non-parametric approaches

1) Direct Method: One graph can be converted to another
graph by performing a series of edit operations. The nominal
number of such edit operations is referred to as Graph Edit
Distance (GED) [14]. Calculating and approximating GED
has been shown to be NP-hard and APX-hard, respectively
[15], [16]. This is because, the calculation and approxima-
tion entail defining the correspondence between the nodes

of the graphs under comparison, which is always considered
a difficult task [17]–[20]. More flexible distance definitions
have been utilised in previous studies to improve on GED.
These measures were based on the propagation models [21]
or the vertex and path resemblances [22]. Despite these flexible
measures being less sensitive to local alterations compared to
GED, they require an advanced alignment of nodes, making
them restricted to explicit applications. If this requirement is
not met, the permutation matrix that defines the full node
correspondence becomes relaxed, and a family of tractable
distances (FTD) [23] is thus considered [24]. The relaxed
matrix can easily be computed and is imperative in preserving
the local properties; however, the resulting measure is still
permutation-sensitive.

2) Kernel approach: The similarity functions among var-
ious graphs that operate by executing implicit alterations on
the graph topologies when comparing two graphs are known
as graph kernel [18]–[20]. An example of such similarity
functions includes the shortest-path (SP) kernel [19] that
counts the numbers of shortest paths that match with similar
node labels at endpoints. Despite the graph kernel functions
having specific valuable properties, they have not managed
to attain both size-invariant and scale-adaptive comparisons
of graphs. Also, the computational requirements of kernel
functions make them inapplicable in large-scale comparisons
of graphs. The Multi-scale Laplacian Graph kernel (MLG) [18]
is capable of attaining scale-adaptivity by manipulating in-
formation propagation within the graph and adding up the
information at every iteration. Nevertheless, this approach has
also raised the concern of computational overhead being cubic
in the eigenvalues of the Laplacian matrix. Another graph
kernel approach called the Weisfeiler-Lehman can operate by
refining the vertex colors [20]. The method operates by first
assigning colours to the nodes using the vertices degrees, and
then, in relation to the neighbour colours, enhances the vertex
colours. The approach has been successful on benchmark
datasets but remains insufficient when differentiating regular
graphs. Another method called the deep graph kernel [25]
utilizes the word embedding model and compares the number
of motifs or subgraphs between the graphs under comparison.
It is also an expensive approach since the motifs extraction
is highly costly, especially when dealing with large networks,
thus, making the method infeasible. Lastly, the shortest path
kernel functions by encoding and comparing graphs using the
shortest path between their vertices’ pairs [26]. The random
walk kernel functions by quantifying the graphs based on the
number of shared walks among them [17].

3) Statistical Representations: Statistical properties can be
used to develop a one-off graph signature vector that can be
utilized in the comparison of graphs through representation-
based methods. Properties like nodes and degrees have been
used in preliminary works [27], since they focus on local
characteristics, are oblivious to universal features, and are easy
to compute. A more advanced representation known as the
Family of Spectral Distances (FSGD) [28] has been applied
to achieve a histogram representation on the dense biharmonic

graph kernel that is high-dimensional and sparse. Nonetheless,
this advanced representation fails to capture important graph
characteristics at dissimilar graph sizes or resolution scales, is
complex in terms of quadratic time, and is thus impracticable
for large graphs.

4) Spectral Representation: Spectral graph theory can be
applied to effectively compare 3D objects [29]–[31]. Pair-
wise shape commonalities can be computed by discovering
the nominal distortion embedding of one shape into another
shape. Successful works have entailed filtering corresponding
functions to diffusion models that are known, such as commute
time distances, heat [32], [33], and wave [34]. However, it
is unclear if the 3D filters can sustain expressiveness when
dealing with high-dimensional graphs. The spectral graph
theory provides a solid ground for comparing graphs.

Higher-order proximity is significant in embedding graphs
into the vector spaces. Its successful functionality requires
graph information from both the local and global levels. Thus,
most graph embedding is achieved using the global-level and
graph-theoretic measures. FGSD [27] produces a representa-
tion of a graph in the form of a histogram constructed from
the pair-wise distances of the nodes that are computed using
a graph spectrum that has both local and global information
of the graph. In the same way, NetLSD [24] uses the heat
diffusion process on graphs and generates a characteristic
vector utilising the Laplacian spectrum. Some studies [35]
have utilized simple statistical graph properties like clustering
coefficient, average degree as well as central measures to
encode graphs.

B. Parametric approaches

1) Graph Neural Networks: GNNs are powerful archi-
tectures for learning from graph-structured data [5]. They
have recently received significant attention because of their
promising results and their applications in the real world [36].
Various approaches have been proposed in recent years to
extract graph representations in multiple settings [37]. Initial
works in this area date back to that of Gori et al. [38]
and Scarselli et al. [39]. These methods usually learn state
vectors for all vertices in an end-to-end fashion. They use an
information diffusion mechanism, defined by nodes updating
their states and exchanging information by passing “messages”
to neighbouring nodes until they reach a stable equilibrium to
aggregate node states in their neighbourhood.

Li et al. [40] proposed a gated graph sequence neural net-
work, a well-known GNN model that uses a Gated Recurrent
Unit to learn the states of nodes. The network learns about
the node and the previous states of the node neighbourhood
to learn latent representations for each node. Similarly, Dai et
al. [41] used a similar approach to node state learning but used
a stochastic fixed point gradient descent instead of a Gated
Recurrent Unit to accelerate the learning process.

2) Graph convolutions: Graph convolutions involve two
basic steps of neighbourhood aggregation and pooling. The
aggregate function involves a message-passing mechanism
where node features are aggregated with their neighbours [42],

whereas the pooling operation combines the embeddings to
obtain graph-level representation [43]. Previous GCN studies
were conducted by Kipf and Welling [44] and Hamilton et
al. [45]. Kipf and Welling [44] aggregated the neighbourhood
of a node while considering the entire adjacency matrix which
requires the whole adjacency matrix and is thus transductive,
whereas Hamilton et al. [45] used a message-passing mecha-
nism to consider a subset of neighbours to aggregate, allowing
inductive representation learning over graphs.

To focus on important or influential neighbours of each
node in aggregation, Veličković et al. [46] presented an at-
tention mechanism that learns attention parameters for each
neighbour. More recently, Bonner et al. [47] proposed a TNA
framework to learn dynamic network structure. Two TNA
modules followed by two GCN layers were considered to
learn the embeddings, then a variational inference was used
to sample an embedding for each node, while the vector inner
product was used as a decoder to predict the graph in the next
time interval. Several follow-up approaches were subsequently
introduced [48], [49].

IV. METHODOLOGY

A. Approach overview

Our approach builds on the ideas from Bonner et al. [9] in
that we build a ‘fingerprint’ of a graph generated from a range
of statistics captured from both local and global level features
of the graph, though we use a different set of statistics here. We
take this further by creating extra ‘fingerprint’ features derived
from the properties of the nodes within the graph. In this way,
we make a ‘fingerprint’ which captures both the topological
nature of the graph but also the properties of the nodes.

B. Generating graph topological descriptors

1) Local features: To encode the local features of the graph,
a number of vertex-level metrics are extracted. Although a
wide selection of vertex feature metrics exist, each exhibits
different characteristics in terms of topological sensitivity and
run-time.

The FEGR approach extracts four features from each vertex
within a graph. Through experimentation, we have determined
that the following four feature metrics give the best balance
between topological sensitivity and run-time. However, other
metrics could also be used if other characteristics of a graph
are important. For each of the four vertex features listed below,
a value is extracted for each vertex v ∈ V :

1) Node degree δ: the number of connections a given node
has to other nodes in the network.

2) Clustering coefficient c: the clustering coefficient is a
measure of the degree to which nodes in a graph tend
to cluster together.

cu =
|(v1, v2) ∈ E : v1, v2 ∈ N |

(2du)
.

The numerator in the above equation counts the number
of edges between neighbours of node u (where we use
N(u) = {v ∈ V : (u, v) ∈ E} to denote the node

Dataset SP NHK EHK GK NetSimile FGSD NetLSD DGSD Ours
w(g) h(g)

Mutag 86.60 85.06 85.37 77.01 83.42 88.26 82.40 83.31 87.70 87.80
PTC 59.00 60.58 57.54 57.56 55.80 60.70 57.22 53.49 61.32 58.20

Proteins 74.12 74.29 59.56 73.22 69.71 70.25 68.10 72.14 73.68 76.10
NCI1 71.65 75.52 50.04 58.12 68.87 79.75 61.94 67.25 73.48 78.9

NCI109 71.48 75.23 50.37 58.97 67.45 80.44 60.38 64.64 72.01 77.67
AIDS 99.24 99.2 99.60 98.75 97.95 98.5 93.7 99.69 99.8 99.8
D&D 77.94 75.81 58.65 >D 73.86 75.9 70.21 72.33 78.52 78.54

TABLE I: Classification accuracy comparison. >D indicates experimental time exceeds a day. We report the state-of-the-art
results from DGSD because we set our experimental procedure similar to it to provide a fair comparison.

neighbourhood). The denominator calculates how many
pairs of nodes there are in the of neighbourhood u.

3) the average degree of neighbours k: it is the average
degree of the neighbourhood of each node.

knn,i =
1

|N(i)|
∑

j∈N(i)

kj

where N(i) are the neighbours of node i and kj is node
the degree of node j which belongs to N(i).

4) Average clustering of neighbourhood: The average
clustering score of the neighbourhood is taken for each
vertex by taking the mean of all the local clustering
scores for the neighbourhood of the vertex.

2) Global features: To make FEGR sensitive to higher level
features, we extract a selection of four global features from
the graph. The global features, chosen to represent each graph,
were selected due to their ability to capture key elements of
global graph topology, whilst being efficient to compute. We
consider the following global features:

1) The largest five eigenvalues {e1, . . . , e5}. We keep the
top five values as these have been previously shown to
be the most significant for predicting the properties of
a system (e.g., in control theory, the largest eigenvalue
can be used to predict stability, while the second value
has a variety of applications [50]). Keeping the largest
five keeps the fingerprint the same size for all graphs.

2) Total number of nodes, N = |V |.
3) Total number of edges, L = |E|.
4) Number of connected components, C. This is the total

number of components within the graph, with a com-
ponent being a subgraph in which there is a possible
path between every vertex, whilst vertices in different
components have no possible path between them.

To encode the local and global properties of the graph, we
initially compute the local features for each vertex. Statistics
are then computed for each of the four local features. We use
the statistics of median, mean, standard deviation, skewness,
and kurtosis to form the graph local descriptor. These can be

concatenated into a vector of twenty values:

{med(δ), δ̄, sd(delta), skew(δ), kur(δ),

...,

med(n), n̄, sd(n), skew(n), kur(n)}

where med(□), □̄, sd(□), skew(□) and kur(□) are the me-
dian, mean, standard deviation skewness and kurtosis of □. We
can then concatenate the four global features to this fingerprint:

{med(δ), δ̄, sd(delta), skew(δ), kur(δ),

...,

med(n), n̄, sd(n), skew(n), kur(n),

e1, e2, e3, e4, e5, N, L,C}.

Local-level statistics help to distinguish between graphs
where the global-level features are the same, and vice versa.
However, if both local- and global-level statistics are the same
between two graphs, we need more information in order to
determine if they are truly the same or different. We argue that
the properties of a node can be used to make this distinction.

3) Aggregated Node Properties: Node properties represent
the data held by a node. For example, in citation networks such
as Cora [51], node properties are the word embedding of the
abstracts and titles of the corresponding papers. Thus, proper-
ties of graph nodes carry important information that could help
in the machine-learning task. In general, these node properties
can be arbitrary information. This needs to be converted into
a fixed-length (numeric) vector which represents the node
properties. This can be achieved by many approaches and is
bespoke to the problem space at hand. We therefore assume,
without loss of generality, that the properties for node i can
be mapped to a vector of values [xi,1, xi,2, ..., xi,n]. This gives
us a vector of length n for each of the m nodes in the graph.
To incorporate property information in our graph descriptor,
we need to aggregate this data down to a simple vector. We
could aggregate this down using the same approach as used for
the local node properties (median, mean, standard deviation,
skew and kurtosis for each of the n elements); however, initial
results where we just sum the vectors have given promising

(a) Rewiring 20K (b) Rewiring 40K (c) Rewiring 60K

(d) Rewiring 80K (e) Rewiring 100K

Fig. 2: Sensitivity to Rewiring Edges

0

2

4

6

8

10

12

MUTAG PTC AIDS PROTEINS NCI1 NCI109

R
u

n
n

in
g

ti
m

e
(s

ec
)

Datasets

Proposed NS

Fig. 3: Run-time comparison of the proposed method against
NetSIMILE (NS) on graph classification datasets

results. Therefore, we define the aggregate properties as

[

m∑
i=1

xi,1,

m∑
i=1

xi,2, ...,

m∑
i=1

xi,n].

This properties fingerprint can now be concatenated with the
local and global statistics and used for downstream machine-
learning tasks.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we provide a comparison of the proposed
framework in a graph classification setting with state-of-the-
art methods. Mainly, we focus on the experimental setting of
DGSD [1] to compare with. DGSD is a recently-proposed
graph descriptor that extracts graph representation in both
centralized and distributed environments by using very simple
graph statistics. The nature of our proposed work is quite sim-
ilar to this method; therefore, we adopt the exact experimental
setting utilised in DGSD and compare our results with it and
all other methods reported in DGSD. Similar to DGSD, we
use Random Forest algorithm with 10-fold cross-validation

and grid search. We kept all the other parameters the same
as suggested in DGSD.

A. Datasets

For graph classification, we consider bioinformatics datasets
including MUTAG, PTC MR, PROTEINS, NCI1, NCI109,
AIDS, and DD. The number of classes in these datasets is two.
These are benchmark graph classification datasets available on
Torch Geometric website and presented in [10].

B. Baseline

For baselines, we consider recent graph representation
methods, DGSD [1], NetLSD, heat h(g) and wave h(w)
kernels [24], FGSD [27], statistical method NetSimile [52]
and well-known graph kernels including Shortest Path [26],
Neighbourhood Hash Kernel (NHK) [53], Edge Histogram
Kernel (EHK) [54], and Graphlet Sampling Kernel (GK) [55].

C. Results

We can observe from the results (Table I) that the proposed
method outperforms all other methods on PROTEINS and DD
datasets while the results on the AIDS dataset are identical to
that of DGSD. We outperform all other methods on AIDS
as well. On the remaining dataset, we achieved results within
1% of the top result on MUTAG, and NCI1 and within 3%
on PTC and NCI109 datasets. These results clearly show
that graph global features positively contribute to the graph
representation.

1) Method Sensitivity Evaluation: Sensitivity to change
in a network is quite an important property of any graph
descriptor. It means that if the topology of a graph is slightly
disturbed, then the corresponding graph representation should
also change accordingly. To evaluate this, we consider syn-
thetic experiments where we generated a graph with Barabasi
Abert model with 100,000 nodes and 300,000 edges. Then we
consider the process of randomly rewiring the network. By

102 103 104

#number of nodes

10 2

10 1

100

101

102

ru
nn

in
g

tim
e

(s
ec

)

102 103 104 105 106

#number of edges

100

101

ru
nn

in
g

tim
e

(s
ec

)

Fig. 4: Run time analysis on the increasing of number of nodes and edges in a graph

20000 30000 40000 50000 60000 70000 80000 90000 100000
#rewired edges

2.5

3.0

3.5

4.0

4.5

5.0

5.5

di
ffe

re
nc

e
in

 th
e

em
be

dd
in

gs

Fig. 5: Sensitivity of our method to the graph topology

random rewiring, we mean that we randomly pick an edge,
remove its starting and ending nodes, and connect that edge
with two other random nodes.

We consider six network rewiring experiments, which
are rewiring 20, 000, 40, 000, 50, 000, 60, 000, 80, 000, and
100, 000 edges in the previously generated original graph.
We show the degree distribution of these graphs in Figure
2. To find the distance between the embedding of the original
graph and the rewired graph, we use Canberra distance. Also,
we show the difference in the embeddings in Figure 5. We
can clearly see that as the number of edges in the rewiring
increases, the distance between the embeddings increases. This
asserts the proposed descriptor is very sensitive to the graph
topology, which means it can discriminate between similar
graphs very well.

2) Running Time Analysis: We also evaluate the proposed
method in terms of running time against NetSimile and con-
sider three different experimental settings. In the first setting,
we consider five benchmark graph classification datasets:
MUTAG, PTC, PROTEINS, AIDS, NCI1, and NCI109 and
run both methods. We show the run-time comparison in Figure
3. We can see that the proposed method takes less time than
NetSimile on each dataset. Specifically, it takes half the time
on NCI1 and NCI109 datasets. In the second experimental set-
ting, we consider simulation on an increasing number of nodes
and explore the run times. For that, we consider Erdős–Rényi
random graphs of size {100, 1, 000, 5, 000, 10, 000, 20, 000}.
Similarly, in the third experiment, we consider increasing the

number of edges in graphs of the same size. For that, we con-
sider a graph of size 5000 (number of vertices), and the num-
ber of edges is chosen from the set {102, 103, 104, 105, 106}.
We apply the proposed method to these graphs and report the
run-time as shown in Figure 4. We can see an increase in
the run-time when either nodes or edges is increased in the
graph. Overall, it processes a graph with a million edges in 36
seconds. These results clearly demonstrate that the proposed
method is scalable on sufficiently large graphs.

VI. CONCLUSION

This paper presents a novel graph representation methods
for a graph classification problem. It primarily explores various
graph theoretic frameworks for this problem and concludes
with nine measures to construct a graph descriptor. These
measures capture both local and global level information of
the graph. Along with the theoretical features, this paper
also leverages aggregated node features to get an expressive
representation. Evaluation of a number of graph classification
datasets shows the effectiveness of the proposed method.

REFERENCES

[1] A. Said, S.-U. Hassan, S. Tuarob, R. Nawaz, and M. Shabbir, “Dgsd:
Distributed graph representation via graph statistical properties,” Future
Generation Computer Systems, vol. 119, pp. 166–175, 2021.

[2] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on
Artifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159,
2020.

[3] A. Said, T. D. Bowman, R. A. Abbasi, N. R. Aljohani, S.-U. Hassan,
and R. Nawaz, “Mining network-level properties of twitter altmetrics
data,” Scientometrics, vol. 120, no. 1, pp. 217–235, 2019.

[4] A. Said, S.-U. Hassan, W. Abbas, and M. Shabbir, “Netki: A kirchhoff
index based statistical graph embedding in nearly linear time,” Neuro-
computing, 2020.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[6] H. Jia, S. Ding, X. Xu, and R. Nie, “The latest research progress on
spectral clustering,” Neural Computing and Applications, vol. 24, no. 7,
pp. 1477–1486, 2014.

[7] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[8] A. Said, M. U. Janjua, S.-U. Hassan, Z. Muzammal, T. Saleem,
T. Thaipisutikul, S. Tuarob, and R. Nawaz, “Detailed analysis of
ethereum network on transaction behavior, community structure and link
prediction,” PeerJ Computer Science, vol. 7, p. e815, 2021.

[9] S. Bonner, J. Brennan, I. Kureshi, and A. S. McGough, “Efficient
comparison of massive graphs through the use of’graph fingerprints’,”
in 12th International Workshop on Mining and Learning with Graphs.
Newcastle University, 2016.

[10] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neu-
mann, “Tudataset: A collection of benchmark datasets for learning with
graphs,” arXiv preprint arXiv:2007.08663, 2020.

[11] D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen,
D. Cao, J. Wu, and T. Hou, “Could graph neural networks learn better
molecular representation for drug discovery? a comparison study of
descriptor-based and graph-based models,” Journal of cheminformatics,
vol. 13, no. 1, pp. 1–23, 2021.

[12] S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, “Comparing
different supervised machine learning algorithms for disease prediction,”
BMC medical informatics and decision making, vol. 19, no. 1, pp. 1–16,
2019.

[13] J. Schrodt, A. Dudchenko, P. Knaup-Gregori, and M. Ganzinger, “Graph-
representation of patient data: a systematic literature review,” Journal of
medical systems, vol. 44, no. 4, pp. 1–7, 2020.

[14] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed
relational graphs for pattern recognition,” IEEE transactions on systems,
man, and cybernetics, no. 3, pp. 353–362, 1983.

[15] M. R. Garey and D. S. Johnson, “Computers and intractability, vol. 29,”
2002.

[16] C.-L. Lin, “Hardness of approximating graph transformation problem,”
in International Symposium on Algorithms and Computation. Springer,
1994, pp. 74–82.

[17] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Learning theory and kernel machines.
Springer, 2003, pp. 129–143.

[18] R. Kondor and H. Pan, “The multiscale laplacian graph kernel,” Ad-
vances in neural information processing systems, vol. 29, 2016.

[19] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Matching node
embeddings for graph similarity,” in Thirty-first AAAI conference on
artificial intelligence, 2017.

[20] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Ma-
chine Learning Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[21] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “Deltacon: A principled
massive-graph similarity function,” in Proceedings of the 2013 SIAM
international conference on data mining. SIAM, 2013, pp. 162–170.

[22] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similar-
ity for anomaly detection,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 19–30, 2010.

[23] J. Bento and S. Ioannidis, “A family of tractable graph distances,”
in Proceedings of the 2018 SIAM International Conference on Data
Mining. SIAM, 2018, pp. 333–341.

[24] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller, “Netlsd:
hearing the shape of a graph,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2018, pp. 2347–2356.

[25] T.-S. Kuo, K.-S. Tseng, J.-W. Yan, Y.-C. Liu, and Y.-C. Frank Wang,
“Deep aggregation net for land cover classification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2018, pp. 252–256.

[26] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,” in
Fifth IEEE international conference on data mining (ICDM’05). IEEE,
2005, pp. 8–pp.

[27] S. Verma and Z.-L. Zhang, “Hunt for the unique, stable, sparse and fast
feature learning on graphs,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[28] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for net-
works,” in 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, 2016, pp. 855–864.

[29] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov,
“Shape google: Geometric words and expressions for invariant shape
retrieval,” ACM Transactions on Graphics (TOG), vol. 30, no. 1, pp.
1–20, 2011.

[30] R. Gal, A. Shamir, and D. Cohen-Or, “Pose-oblivious shape signature,”
IEEE transactions on visualization and computer graphics, vol. 13,
no. 2, pp. 261–271, 2007.

[31] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distri-
butions,” ACM Transactions on Graphics (TOG), vol. 21, no. 4, pp.
807–832, 2002.

[32] M. M. Bronstein and A. M. Bronstein, “Shape recognition with spectral
distances,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 5, pp. 1065–1071, 2010.

[33] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informa-
tive multi-scale signature based on heat diffusion,” in Computer graphics
forum, vol. 28, no. 5. Wiley Online Library, 2009, pp. 1383–1392.

[34] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel signature:
A quantum mechanical approach to shape analysis,” in 2011 IEEE inter-
national conference on computer vision workshops (ICCV workshops).
IEEE, 2011, pp. 1626–1633.

[35] K. Kloster and D. F. Gleich, “Heat kernel based community detection,”
in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 1386–1395.

[36] W. L. Hamilton, Z. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Eng. Bull., vol. 40, pp.
52–74, 2017.

[37] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph
neural networks,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 4602–4609.

[38] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proceedings. 2005 IEEE international joint
conference on neural networks, vol. 2, no. 2005, 2005, pp. 729–734.

[39] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[40] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[41] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-
states of iterative algorithms over graphs,” in International conference
on machine learning. PMLR, 2018, pp. 1106–1114.

[42] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” Computational Social Networks,
vol. 6, no. 1, pp. 1–23, 2019.

[43] Y. Chen, G. Ma, C. Yuan, B. Li, H. Zhang, F. Wang, and W. Hu,
“Graph convolutional network with structure pooling and joint-wise
channel attention for action recognition,” Pattern Recognition, vol. 103,
p. 107321, 2020.

[44] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[45] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[46] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[47] S. Bonner, A. Atapour-Abarghouei, P. T. Jackson, J. Brennan, I. Kureshi,
G. Theodoropoulos, A. S. McGough, and B. Obara, “Temporal neigh-
bourhood aggregation: Predicting future links in temporal graphs via
recurrent variational graph convolutions,” in 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 2019, pp. 5336–5345.

[48] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

[49] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional net-
works,” in European semantic web conference. Springer, 2018, pp.
593–607.

[50] S. K. Simić, M. Anelić, C. M. da Fonseca, and D. Živković, “Notes
on the second largest eigenvalue of a graph,” Linear Algebra and its
Applications, vol. 465, pp. 262–274, 2015.

[51] B. London and L. Getoor, “Collective classification of network data.”
Data Classification: Algorithms and Applications, vol. 399, 2014.

[52] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos, “Network
similarity via multiple social theories,” in Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, 2013, pp. 1439–1440.

[53] S. Hido and H. Kashima, “A linear-time graph kernel,” in Ninth IEEE
International Conference on Data Mining. IEEE, 2009, pp. 179–188.

[54] M. Sugiyama and K. Borgwardt, “Halting in random walk kernels,”
Advances in neural information processing systems, vol. 28, 2015.

[55] N. Pržulj, “Biological network comparison using graphlet degree distri-
bution,” Bioinformatics, vol. 23, no. 2, pp. e177–e183, 2007.

