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Abstract. In machine learning, features play a vital role in modeling
and understanding the data; their quality and representation essentially
determine how accurate the results are. The problem is compounded in
the graph-based learning paradigm when one considers how complex and
interconnected the data is. However, to achieve more accurate results,
augmenting graph data poses specific challenges in the field of graph
learning. Feature augmentation is a critical aspect of enhancing data.
Moreover, some datasets have limited features and some real datasets
do not have features. In this paper, we present our approach termed
Feat-Aug which is an extension of our previous work on non-parametric
approaches. The aim of this work is to augment node features in graphs
on parametric approaches such as Graph Neural Networks (GNNs) with
the objective of improving performance in node classification tasks. Our
approach combines real features, such as a bag of words in citation
networks, which are typically associated with nodes, with structural
features extracted at the node level, such as node degree and clustering
coefficient. To further enhance these features, we leverage deep learning
models to incorporate additional node-level features. The final modified
features are the result of the combination of both real and structural
features. To evaluate the effectiveness of the approach, we carried out
extensive experiments with several real datasets. Moreover, our method
consistently outperforms or achieves comparable results to Graph Neural
Networks (GNNs) baselines and their variations, such as popular graph
neural network models. Crucially, our approach deals with the problem
of insufficient real features in certain datasets. This study is a major
progression in the field through an effective node classification model.
By integrating both real and structural features, our approach holds
promise to improve the performance of node classification models.
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1 Introduction

Graph machine learning tasks, such as drug discovery [1], recommendation sys-
tems [2], and traffic prediction [3], have been greatly enhanced by Graph Neural
Networks (GNN) and their variants. The essence of GNNs is in the message-
passing mechanism, where features from adjacent nodes are incorporated into
the features of a given node [4]. Although GNNs have been quite successful
in recent years, their model inference performance is improved by the aug-
mentations to nodes and graphs, as a result of modified features. The features
augmentation strategies have great success in classic machine learning domains
such as computer vision [5] [6] and natural language processing [7]. Convolu-
tional neural networks use this method, and the augmentation effects have been
particularly fruitful when applied to image data [8]. Unlike graph data, where
each node has connections to other nodes, the image pixels do not have any
connections. Several data augmentation in image classification tasks indepen-
dently modify image features, including RGB values and local neighbourhoods in
the images [9]. Topology-level[10] and feature-level augmentation [11] [12] [13]
are the two approaches for node and graph augmentations. At the topology
level, a new graph topology is generated through augmentation techniques that
modify the adjacency matrix. In contrast, adversarial training improves gen-
eralisation by perturbing node features during node-level augmentation tech-
niques [14] [12] [13]. Some methods rely on changing the edges by removing
or modifying them according to the information within the graph itself [15].
Additionally, some researchers have found great success in data augmentation
by using extra topological features to build a dual graph similarity matrix of
the graph [16]. Adding more edges between nodes with the same label increases
the probability that the central node will benefit from the propagation process,
which is another strategy used by researchers [16].

Numerous real-world issues, particularly in achieving high performance in
applications, such as social network analysis, protein-protein interaction predic-
tion, and network traffic categorization, involve graph machine learning tasks
including graph classification, and node classification. Therefore, to improve the
performance we should consider graph augmentation by supplementing the node
features. In this paper, we looked at how to combine structural and real features
at the node level to enhance the node features within the network.
In graph natural networks, nodes have linked properties like age names in social
networks [17] and bags of words in citation networks [18]. On the other hand,
the structural features are taken from the graph structure and provide the graph
with a unique signature. The node degree, node centrality, cluster coefficient,
and average node degree are a few examples of structural node properties. A
mix-up technique described by Wang et al. [19] involves altering the data to
create new features.

To the best of our knowledge, while some previous data augmentations based
on GNNs, such as the baseline Graph Convolutional Networks (GCN) [20],
GraphSAGE [1], and Graph Isomorphism Network (GIN) [21], and their vari-
ants, may have implicitly used some structural features alongside real features,
our method is the first to explicitly and systematically concatenate these fea-
tures. This explicit approach enhances interpretability and potentially improves
performance by clearly leveraging the strengths of both feature types in the
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context of node classification using GNNs. The implicit methods may lose their
potential advantages in graph machine learning applications as they disregard
the explicit evaluation of structural features by not systematically concatenat-
ing them with the real features. Therefore, they have not assessed the explicit
strength of the structural features themselves and how graph deep learning
learns from concatenated features. In contrast, we address this gap by explicitly
taking into account both structural and actual features.

The proposed method demonstrates its effectiveness in comparison to state-
of-the-art methods. Combining real and extracted characteristics can enhance
our understanding of the significance of structural features for graph machine-
learning tasks.

Therefore, we are taking the structural features out of the graph and con-
catenating them with the actual ones. Additionally, our method is different from
the earlier methods found in GNNs and their variations since previous methods
disregard the structural features and concentrate primarily on actual features.

To facilitate the reproducibility of our results, we have made the source
code for our method publicly available. This allows other researchers to easily
access and build upon our work. Overall, our contributions in this paper can be
summarized as follows:

– We propose a novel method for node augmentation that combines aggre-
gated original features and local structural features as input to the graph
deep learning model.

– We identify and utilize a set of relevant structural features for node feature
concatenation.

– We conduct extensive experiments to evaluate the performance of our ap-
proach on node classification.

– Our experimental results show that our method outperforms state-of-the-
art approaches on node classification, demonstrating the effectiveness of our
approach.

– We make the source code for our method publicly available to enable better
reproducibility of the results3.

– Our approach demonstrates that the improved performance is due to the
capability of a graph deep learning model to capture and learn combined
features, which benefits data with insufficient features.

2 Literature Review

Since the advent of graph neural networks, there has been a significant shift
in how we handle node feature representations. Initially, the methods for em-
bedding lookups, which are crucial for interpreting node features, were limited
in their effectiveness [4]. However, GNNs have introduced advanced techniques
for managing these node properties. Specifically, GNNs utilize aggregators —
sophisticated mechanisms that compile and integrate features from neighboring
nodes.
This aggregation process is central to GNNs’ ability to effectively capture the

3 https://github.com/mohamad-1977/Fet-Aug
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complex relationships and interconnectedness inherent in graph data. By lever-
aging these aggregators, GNNs can construct a more comprehensive and nu-
anced representation of each node, taking into account not just node attributes
but also the influence of its network context [22]. Also, it has succeeded in in-
ductive learning [1] [23]. The graph convolution methods, which are based on
spatial-based methods, have demonstrated significant success compared to the
spectral GNNs [1] [2], which are based on convolutions using spectral graph the-
ory [24], they are also expensive to employ as they process the whole adjacency
matrix [25] [20] [26].

Researchers have been seeking ways to make machine-learning models ca-
pable of improving the generalisation and efficiency of graph machine-learning
tasks such as node classifications, link prediction, and graph classifications. Re-
cently, they achieved significant success in augmentations techniques in many
domains such as computer vision [5] and natural language processing [7].

Augmentation in graph machine learning tasks is also a popular topic. The
graph augmentations have two approaches: topology-level augmentation and
feature-level augmentation.

Works done by Chen et al. [27], and Rong et al. [28], focused on graph topo-
logical augmentation, which involves adding or removing edges or nodes and
consequently changing the graph structures. To improve the generalization and
performance of the models, numerous studies, like work done by Yoo et al. [29],
focus on random edge insertion or deletion. The work of Yoo et al. [30] performs
node splitting or merging, and You et al. has implemented the subgraph sam-
pling [29]. These methods make variations in graph topology and have effectively
leveraged the relationships in graph data and improved performance.

Alternatively, node-level augmentation approaches work on altering node
features or edge features in the graph. Works done by Yang et al. [31] and by
Feng et al. [12] use the perturbations of the node features based on adversar-
ial training. These methods attempt to increase the diversity of node feature
representations, which then increases the performance of the models.

Node level and topology augmentation have been showing improved out-
comes in many graph machine learning tasks, for instance, recommendation sys-
tems [32], drug discovery [33], and traffic prediction [34]. However, all aforemen-
tioned methods neglect the structural features and just focus on node-associated
features. Thus, this paper proposes a novel approach by incorporating both real
and structural features at the node level and evaluating GNNs baseline models.
Our approach advances how structural features enhance deep graph learning.

3 Motivation and Requirements

3.1 Motivation

Graph neural networks have gained considerable interest in recent years for their
capacity to capture complex connections among nodes in a graph, making them
well-suited for node classification. Nevertheless, to qualify this achievement of
GNN, the structure depends on the presence of node features as illustrated in
Eq. 1, that are rich and high-dimensional. However, in the most realistic graphs,
the quantity and quality of available features are limited and some of the real
data has no features [35], which weakens the performance of GNNs. In addition,
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all previous works based on GNN baselines, GCN [20], GraphSAGE [1], Graph
Isomorphism Network [21], and their variants, neglected to integrate structural
features by concatenating them with real features, which can give more infor-
mation about the nodes. There have been lots of attempts to augment graph
data as we mentioned in the literature. One of these approaches is the Mixup
introduced by Wang et al. [19] that consists of perturbing the data to create
new or enhanced features. While this method has also demonstrated some good
progress; this and all methods in the litterateurs are hampered by just perturb-
ing the data and do not take the structural features into account, To overcome
this drawback we suggest a different way of node augmentation by performing
feature augmentation(Feat-Aug) that combines real and structural features, cre-
ating more meaningful node embedding. The proposed approach is motivated
by the Mixup technique yet varies in that, it includes a combination of actual
and extracted features, instead of perturbing the data.

h
(l)
i ← AGGREGATE

(
h
(l−1)
i , h

(l−1)
j : j ∈ N(i)

)
⊕W (l) (1)

3.2 Requirements

Incorporation of the suggested method of feature augmentation has to satisfy
several requirements.

– A graph must be available for analysis, represented in a format that can be
processed by a GNN model (e.g. Networkx)

– Real features must be available for the nodes in the graph. These may
include domain-specific knowledge about the nodes, such as their function
or role in a particular system.

– It must be possible to compute the structural features for nodes in the
graph.

– A GNN model must be available for training and testing. This model should
be capable of processing node features and generating node embedding.

– A node classification task must be defined, along with an objective function
for measuring the performance of the model.

– A method for sampling and interpolating nodes, such as the mixup technique
used in [19], must be implemented to generate the augmented node features.

4 Methodology

In our approach to enhancing node features, we drew inspiration from concepts
explored in our prior research, as detailed in [36], which involved modifying node
features through non-parametric approaches in graph classification. In contrast
to this, our proposal focuses on parametric approaches (graph deep learning),
specifically graph neural networks baseline and its variants. By incorporating
structural features derived from the node-level, we aim to uncover structural
properties inherent in the graph data. Leveraging these structural features could
potentially enhance the accuracy of classification models across a diverse range
of tests. We further strengthen this method by using deep graph learning mod-
els to reinforce structural features with more node-level attributes as shown in
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figure 1. Our approach performance is evaluated by applying the modified fea-
tures on graph neural network baselines, such as GCN [20] and GraphSAGE [1]
and recent graph augmentation based on GCN, Mix-up [19], in which data is
perturbed to produce new features. However, in our work, we do not alter any-
thing within the data; our work combines structural and real features at the
node level to produce a modified feature. Our approach involves the following
these steps:

1. Mining the node features at local-level features.
2. Create the modified features by combining both extracted features and

node-associated features.
3. Use the modified attributes as inputs to graph deep learning models.
4. Employ deep learning models to evaluate the performance with the modified

features.

Algorithm 1 Feat-Aug
Input: Graph G
Output: Node embedding
1: // Extract features from nodes (see Algorithm 2)
2: FG← ExtractedFeatures(G)
3: Cmf ← {original features} ∪ {structural features}
4: for each node v ∈ G do
5: h

(0)
v ← x

(0)
v || f (0)

v

6: for k = 1 to K do
7: msg(k)

v ← aggregate
({

(h
(k−1)
v , h

(k−1)
u ) | u ∈ neighbors(v)

})
8: h

(k)
v ← combine

(
h
(k−1)
v ,msg(k)

v

)
9: end for

10: L← loss(h(k)
v , y)

11: h
(t)
v ← h

(t−1)
v + gradient(L, h(t)

v )
12: end for
13: return node embedding

Algorithm 2 Extracted Features
Require: Graph G

1: FG← [] ▷ Initialize feature matrix for G
2: for each node v in G do ▷ Extract features for each node v in G
3: features← [δ(v), C(v),K(v), c(N(v)), d(N(v)), |Eego(v)|,
4: c(N(v)), |Eoego(v)|, |N(ego(v))|]
5: FG← FG ∪ {features}
6: end for
7: return FG ▷ Return a matrix of node × features

Algorithm 1 presents our approach framework, which consists of three dis-
tinct steps: feature extraction (Algorithm 2), concatenating real features with
extracted features (Algorithm 3), feature normalization, and evaluating the node
classification performance.
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Algorithm 3 Concatenated Features
1: Input: Graph G, feature matrix X (Real features matrix), additional features
{F (v)} for each node v

2: Output: M concatenated features matrix
3: Initialize M with dimensions (num_nodes, dim(X) + dim({F (v)}))
4: for each node v ∈ G do
5: concatenated_features← concatenate(X[v], {F (v)})
6: M [v]← concatenated_features
7: end for
8: Return: M ▷ Return a matrix M with dimensions

(num_nodes, dim(X) + dim({F (v)}))

Feature Extraction To encode the local features of the graph (see Algo-
rithm 2), several node-level metrics are extracted. While there are many avail-
able metrics for node features, each one has distinct characteristics in terms of
its sensitivity to topology and its execution time [36].

Our approach extracts 9 properties from every vertex in a graph. Through
experimentation, we have determined that the following 9 feature metrics give
the best balance between classification and run-time. Alternatively, if there are
other significant attributes of a graph, different metrics could be employed. A
value is extracted for each node for each of the 9 node properties given below
v ∈ V :

1. Node degree δ: The degree of a node in a network refers to the number
of connections it has with other nodes.

2. Clustering coefficient c: the clustering coefficient is a measure of the de-
gree to which nodes in a graph tend to cluster together.

cu =
|(v1, v2) ∈ E : v1, v2 ∈ N |

(2du)
.

The numerator represents the count of edges that connect neighbouring
nodes of node u (where we use N(u) = {v ∈ V : (u, v) ∈ E} to denote
the node neighbourhood). The denominator determines the total number of
node pairings in nearby of node u. [4]

3. the average degree of neighbours k: The average degree of each node
nearby is calculated.

knn,i =
1

|N(i)|
∑

j∈N(i)

kj

where N(i) represents the set of neighbouring nodes of node i, and kj de-
notes the degree of node j which is a member of N(i) [36].

4. Average clustering of neighbourhood: The average clustering score of
each vertex is calculated by taking the mean of the local clustering scores
in its neighbourhood.

5. The average number of node i’s two-hops: it is two-hop away neigh-
bors, denoted as dN(i), is computed as 1

di

∑
j∈N(i) dj .

6. The average clustering coefficient of N(I): The average clustering co-
efficient of N(i), represented as cN(i), is computed as 1

di

∑
j∈N(i) cj .

The variable cj represents the local clustering score calculated in step two
[36].
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Dataset #Nodes #Edges #Classes #Features

Citeseer 3,327 4,732 6 (s) 3,703

Cora 2,708 5,429 7 (s) 1,433

Pubmed 19,717 44,338 3 (s) 500

Amazon (Photo) 7,650 143,662 8 (s) 745

Amazon (Computers) 13,752 287,209 10 (s) 767

Flickr 1,598,960 132,169,734 107 (s) 200

Table 1: Data statistics for node classification datasets. The letter ‘s’ represents
single-label classification. [19]

7. The number of edges in node i’s egonet: The number of edges in node
i’s egonet is denoted as |Eego(i)|, and ego(i) returns the egonet of node i
[37].
where the egonet of a node includes the node itself, its immediate neighbors,
and all the edges among them.

8. The number of outgoing edges from ego(I): The number of outgoing
edges from ego(i) is denoted as |Eo,ego(i)| [37].

9. The number of neighbors of ego(I): The number of neighbors of ego(i)
is denoted as |N(ego(i))|[37].

Concatenating Features As described in Algorithm 3, the proposed approach
to feature augmentation involves extracting structural features, defined previ-
ously, from the node level and concatenating them with real features associated
with the nodes as shown in Eq.2. where fi represents extracted features and hi

represents the real features at level 0.

Features Normalization A critical step in this preprocessing pipeline in-
volved normalizing the data features. This normalisation technique was applied
to mitigate the potential effects of varying scales and magnitudes across differ-
ent features. By standardising the feature values to a common scale, we aimed
to create a more uniform and interpretable representation space for the model.
This process not only facilitated comparisons between different features but also
prevented certain features from dominating the learning process because of their
larger scales. Furthermore, normalization promoted fairer contributions from all
features and improved model robustness and generalization by reducing sensi-
tivity to the absolute magnitudes of feature values. Overall, normalisation of the
data features was integral to enhancing the stability, reliability, and performance
of our model.

4.1 Node Classification Method

Concatenated Features with the GNN Baseline After the three steps
mentioned above, the goal of this process is to use these features to generate node
embeddings that capture the relationships between nodes in the graph, and then
use these embeddings for node classification, as shown in Algorithm 1. Therefore,
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we incorporate the concatenated features into works such as GNN baselines
GCN[20], GraphSAGE [1], GraphSAINT[23], and recent node augmentation
Mixup [19]. In the GNN baseline, the “message passing” process of a GNN
layer, as described in Eq. (1) involves updating the representation of node i
by aggregating the representations of itself and its neighbors. By stacking L
layers, GNNs enable the final-layer prediction of node i to be based on its L-
hop neighborhood. This is commonly referred to as the embedding of node i.
Thus, in our method, the hidden states for each node in the graph are initialized
by setting h(0) to the node attributes x(0), and then structural features are added
to the initial features to produce the modified features h(0), as described in the
previous sections. Then, for each layer l in the GNN model, from 1 to l - 1,
update the hidden states of the nodes using the AGGREGATE function and
the hidden states of the neighbors of each node.

Concatenated Features with Mixup we incorporate the concatenation data
into the work of [19], as shown in Algorithm 4, in which the hidden states for
each node in the graph are initialized by setting h(0) to the node attributes
xi. For each layer l in the GNN model, from 1 to L - 1, update the hidden
states of the nodes using the AGGREGATE function and the hidden states
of the neighbors of each node. For each node in the graph, sample another
node j from the set of all nodes. Sample a value for λ from a Beta distribution
with parameter α. Interpolate the attributes and labels of the two nodes using
λ, creating new attributes x̃i and ỹi for the interpolated node. Initialize the
hidden state of the interpolated node ˜h(0) using the interpolated attributes x̃i.
For each layer l in the GNN model, from 1 to L, update the hidden states of
the interpolated node using the AGGREGATE function and the hidden states
of the neighbors of the interpolated node. Calculate the classification loss L on
the interpolated hidden states and labels. Use backpropagation to minimize L
and update the model parameters W (l).

h(l) = fi ||hi
(l) (2)

5 Experimental Setup and Results

This section evaluates the proposed method using comprehensive experiments.
Our proposed approach aims to improve the features of nodes in a graph, en-
abling it to effectively perform node classification in both transductive and in-
ductive settings. The transductive setting means that features at all nodes are
available during training, except labels of test nodes, whereas in the inductive
setting, none of the feature vectors are available for validation or testing.

5.1 Transductive Setting

A comprehensive evaluation was conducted to assess the effectiveness of our
method. Many GNN baselines were compared with our approach, including
the Mixup method [19] as well as widely-used GNN models such as GCN [20],
GAT [38], and LGCN [39]. We employ the datasets mentioned in Table 1, to
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Fig. 1: Architecture Diagram of GNN Models with Concatenated Features, This
figure depicts the architecture diagram of GNN models with concatenated fea-
tures. (a) Input: A labeled graph is provided as input to the extracted features
algorithms.(b) Extracted Features Process: The extracted features algorithms
process the input graph to extract relevant features. (c) Concatenated Features
Process: Once the extracted features process is complete, the features are con-
catenated to form a feature matrix. Forwarding Concatenated Features to GNN
Models: The concatenated feature matrix is then forwarded to the GNN models
for further processing and analysis.

evaluate the efficacy of these node classification models. The datasets can be
accessed by the public on the Torch Geometric website [40].

In each graph, the nodes are divided into three sets: training, validation, and
testing. We conduct 50 trials of experiments, initializing the weights randomly
for each split. Notably, we can see the influence of the extracted features on the
GNN baseline methods as shown in Table 3.

Results Table 3 shows the results of our proposed approach against the base-
lines. We use the same experimental setup as in the original Mixup paper [19]
to compare our proposed method to this approach. Our proposed method over-
comes all methods on the dataset. Our approach achieves, on the Cora dataset,
an improvement of 1% over the Mixup [19], and nearly 2% on the CiteSeer
and Pumbed dataset; these results show how the structural features impact the
graph deep learning models performance.

5.2 Inductive Setting

The datasets utilised for evaluation are Flickr, Amazon(Computer), and Ama-
zon(Photo) [41]. The size of these datasets exceeds the capacity of full-batch
implementations of GCN architectures to effectively handle them. Therefore, to
compare, we employ the more scalable GraphSAGE [1] and GraphSAINT [23]
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Algorithm 4 Feat-Aug
Input: Graph G
Output: Node embedding
1: // Extract features from nodes (see Algorithm 2)
2: FG← ExtractedFeatures(G)
3: Cmf ← {original features} ∪ {structural features}
4: for each node v ∈ G do
5: h

(0)
v ← x

(0)
v + f

(0)
v

6: end for
7: for l← 1 to L− 1 do
8: for each node i ∈ G do
9: h

(l)
i ← AGGREGATE(h(l−1)

i , {h(l−1)
j }, {W (l)

ij })
10: end for
11: end for
12: for each node i ∈ G do
13: Sample node j from G
14: λ← Beta(α, α)
15: x̃ij ← λxi + (1− λ)xj

16: ỹij ← λyi + (1− λ)yj

17: h̃
(0)
ij ← x̃ij

18: for l← 1 to L do
19: h̃

(l)
ij,i ← AGGREGATE(h̃(l−1)

ij,i , {h(l−1)
k }, {W (l)

ik })
20: h̃

(l)
ij,j ← AGGREGATE(h̃(l−1)

ij,j , {h(l−1)
k }, {W (l)

jk })
21: h̃

(l)
ij ← λh̃

(l)
ij,i + (1− λ)h̃

(l)
ij,j

22: end for
23: end for
24: Calculate classification loss L on {h̃(L)

ij , ỹij | i ∈ G}
25: Back-propagation on {W (l) | l ∈ {1, 2, . . . , L}} for minimizing L

as the baselines. These methods have similar goals to our proposed work but
differ in their approach to augmenting the features of the nodes. The research
experiments were conducted for a total of 100 trials, utilising random weight ini-
tialization. The findings have been documented in Table 2. GraphSAGE utilises
mean, LSTM, and max-pooling as the aggregators, respectively.

Results We use GraphSAGE-mean and GraphSAINT-GCN as the implemen-
tations for our suggested method to investigate whether Feat-AUG can enhance
the performance of GNNs in the inductive setting. Concatenating features im-
proves the test F1-micro scores of GraphSAGE-mean by 1.9% on Flickr and
yields a 1% improvement over DropEdge + GraphSAGE on the same data.
Additionally, it improves the scores by 12% on Amazon (Computers) and 4%
on Amazon(Photo) compared to GraphSAGE. Our method + GraphSAGE in-
creases the scores by nearly 10% on Amazon (Computers) and by 5% on Amazon
(Photo) compared to DropEdge + GraphSAGE. Furthermore, our method +
GraphSAINT achieves nearly similar results on the Flickr dataset compared to
GraphSAINT, and on Amazon Computers and Photo, it improves the results
by 6% and 2% respectively. Consequently, our proposed method improves them
to surpass the performance of the standard approaches.
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Table 2: Classification accuracy comparison for inductive setting
Method Flickr Amazon (Computer) Amazon (Photo)

Accuracy Accuracy Accuracy

GraphSAGE-mean[1] 50.1± 1.1 80.91± 0.83 87.25± 0.50

GraphSAGE-LSTM[1] 50.3± 1.3 80.25± 0.43 87.1± 0.30

GraphSAGE-pool[1] 50.0± 0.8 80.76± 0.23 87.34± 0.30

DropEdge[28] + GraphSAGE 50.8± 0.9 82.11± 0.30 87.64± 0.40

GraphSAINT[23] 51.1± 0.2 77.4± 0.1 87.5± 0.3

Ours + GraphSAGE 52.1 ± 0.2 93.2 ± 0.1 92.4 ± 0.2

Ours + GraphSAINT 51.2 ± 0.2 83.4 ± 0.1 89.4 ± 0.2

(a) GCN (b) Mixup (c) Ours

Fig. 2: A comparison of Mixup model and Ours Model, showcasing their perfor-
mance differences in the final representation in the Cora dataset (visualized by
t-SNE[42])

Table 3: Classification accuracy comparison for the Transductive setup. The
experimental setup of Mixup is followed to enable a fair comparison.

Method Citeseer Cora Pubmed

Accuracy Accuracy Accuracy

GCN [20] 70.3 81.5 79.0

GAT [38] 72.5 ± 0.7 83.0 ± 0.7 79.0 ± 0.3

LGCN [39] 71.1 ± 0.5 82.2 ± 0.5 79.0 ± 0.2

GMNN [43] 73.6 83.7 81.9

Mixup + GCN [19] 78.7 ± 0.9 90.0 ± 0.7 87.9 ± 0.8

Ours + Mixup + GCN 80.4 ± 1.4 91.4 ± 0.1 88.4 ± 1.1

5.3 Discussion

Our experiments demonstrate that our approach in node classification tasks
on different datasets, including Cora, Citeseer, and PubMed for transductive
settings, as well as Flickr, Amazon (computer), and Amazon (Photo) for induc-
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(a) Cora (b) CiteSeer

Fig. 3: Comparison of loss functions between our proposed model and the Mixup
model, illustrating the superior compression achieved by our model.

tive settings, has significant benefits. This indicates that leveraging structural
features can greatly enhance the baseline of graph deep learning and its variants.

In addition, previous methods have neglected the use of structural features
and focused only on real features associated with graphs. Therefore, by com-
bining the extracted features with real features, the proposed method has the
potential for further research to capture the benefits of structural features and
leverage them in GNN (Graph Neural Networks) variants.

Furthermore, the interpreter of our proposed method for its significant achieve-
ments is the capability of a graph deep learning model to capture and learn these
combined features. The modified features lead to precise node representations,
thereby improving node classification performance.

Moreover, the simplicity of the architectures is the main advantage of our
method. With this approach, we can achieve state-of-the-art performance, such
as GCN [20], while maintaining low memory and computation costs.

5.4 Model Visualization

Fig. 2 presents the last node representations of the GCN, Mixup, and our pro-
posed models on the Cora dataset. From the figures, we notice the clear node
representations and discriminative between classes in the cora dataset, indi-
cating that our proposed method is superior to other methods. Fig. 3 gives
the visualization of the node representations of our proposed method and the
Mixup. This figure provides some insight into the training process of both meth-
ods and provides a clear comparison, demonstrating how our approach leads to
faster convergence.

6 Conclusion

In this paper, we have introduced a novel approach for augmenting node features
in graphs to enhance performance in node classification tasks. Our method com-
bines real features, such as a bag of words in citation networks, with structural
features, like node degree and clustering coefficient, extracted at the node level.
Additionally, we utilize deep learning models to further enrich these structural
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features, creating a comprehensive node representation. We have conducted ex-
tensive experiments on a variety of real-world datasets, including Cora, Citeseer,
and Pubmed, to evaluate the effectiveness of our approach. The results demon-
strated significant improvements over traditional methods that rely solely on
real features, demonstrating the benefits of integrating both real and structural
features. This approach not only addresses the issue of limited real features in
some datasets but also highlights the potential of combining different types of
node features to achieve more accurate and robust node classification.

Our approach represents a step forward in the field, as previous methods
for augmenting graph features have largely focused on the use of real features
and have neglected the potential benefits of incorporating structural features.
By considering both real and structural features when augmenting the data, we
are able to provide a more comprehensive representation of the nodes within
the graph, leading to improved performance in node classification tasks. Future
work will see an investigation of the potentials of our proposed approach for
other graph-based tasks, such as graph generation and link prediction. We also
plan to further explore the use of deep learning models to incorporate additional
node-level features and evaluate the impact on the performance of the model.
We believe that these efforts will help to facilitate further progress in the field
and contribute to the development of more effective graph classification models.
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